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Abstract 

Modeling landslide hazard is among the forecast activities of the Civil 

Protection system. Usually, scientific literature that aims to determine rainfall 

thresholds for the possible occurrence of landslides, tends to rely on two main 

separate approaches: empirical and physical models. This research 

contributes to such debate by adopting both the approaches, after integrating 

some of the each other features. This novel methodology has been applied to 

the landslides affecting the eastward Esino River Valley, located in the 

Marche region (central Italy). Post-orogenic quaternary sediments, with 

approximatively similar hydrogeological properties and prone to rainfall-

induced shallow landslides, characterize this 550 km2 wide area. 

This volume is divided in four sections focusing on: i) the validation of the 

correlation between historical landslides and rainfall series; ii) the application 

of empirical models, namely the cumulative event – duration, the maximum 

intensity – duration, the mean intensity – duration, and the Bayesian methods; 

iii) the application of the US Geological Survey’s Transient Rainfall 

Infiltration and Grid-based Regional Slope-stability (TRIGRS) physical 

model; iv) the testing of all the above models, during a rainfall event that 

affected the study area on 2-4 May 2014 and triggered several landslides.  

Results of this research are proposed as possible decision support tools for 

landslide warning. 
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Landslides, landslide forecast, empirical model, physical model, Italy. 
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1 Introduction 

 

 

1.1 Landslide hazard 
 

The general term “landslide” is used to describe a wide variety of processes 

that result in the downslope movement of soil, rock, organic material or 

artificial fill, or a combination of these, under the effect of gravity (Cruden, 

1991; Cruden and Varnes, 1996). “Landslide hazard” is defined as the 

probability, for a potentially damaging landslide of a given magnitude, to 

occur within a given area and within a given period of time (Varnes, 1984). 

This definition refers to (i) the dimension and destructive power of the 

phenomenon, (ii) the geographical location where it may occur, and (iii) the 

time recurrence of the event (Guzzetti et al., 1999). 

 

TYPE OF MOVEMENT 

TYPE OF MATERIAL 

BEDROCK 

ENGINEERING SOILS 

Predominantly 

coarse 

Predominantly 

fine 

FALLS Rock fall Debris fall Earth fall 

TOPPLES Rock topple Debris topple Earth topple 

SLIDES 
ROTATIONAL 

Rock slide Debris slide Earth slide 
TRANSLATIONAL 

LATERAL SPREADS Rock spread Debris spread Earth spread 

FLOWS 
Rock flow  

(deep creep) 

Debris flow  

(soil creep) 

Earth flow  

(soil creep) 

COMPLEX: Combination of two or more principal types of movement 

Table 1 Types of landslides. Simplified version of Varnes (1978) classification (EU-FP7, 2012). 

 

Landslides can be classified into different types based on the slope movement 

mechanism and rate, the material involved, the mechanical behavior, or the 

movement stage. Among all the classifications proposed in literature (e.g. 

Varnes 1978; Hutchinson 1988; Leroueil 2001; Hungr et al. 2013), the most 

widespread is the work of Varnes (1978), modified in Cruden and Varnes 

(1996). They proposed a taxonomy that mainly considers the types of 

movement at the initial stage of the motion and the material (Table 1).  
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Figure 1 These schematics illustrate some of the most common types of landslide movements (U.S. 

Geological Survey, 2004). 

 

The type of movement is governed by the mechanical internal behavior of the 

material involved and by the displacement of the landslide mass: fall, topple, 

slide, spread, or flow. The material in a landslide mass is considered either 

rock or soil (or both); the latter is described as debris if composed of coarse 

fragments and earth if mainly composed of sand-sized or finer particles. Thus, 

landslides are described using two terms that refer respectively to material 
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and movement (i.e., rock fall, debris flow, and so forth) (Figure 1). A 

combination of two or more types of movement is called a complex landslide. 

 

The traditional viewpoint that landslides are restricted to extremely steep 

slopes and inhospitable terrain does not reflect the real nature of the problem. 

Slope failures affect both dry and humid areas, and most important, steep 

slopes are not a prerequisite for landslides to occur. In fact, landslides affect 

most countries in the world (International Geotechnical Societies UNESCO 

Working Party on World Landslide Inventory (WP/WLI), 1993). The reason 

for such wide geographic coverage has to do with the many different 

triggering mechanisms.  

 

Landslides are caused by different processes and characteristics that can be 

arranged in four groups: (i) geological causes (weak, sensitive, weathered, or 

sheared materials, contrast in permeability or in stiffness); (ii) morphological 

causes (fluvial, glacial or wave erosion of slope toe, tectonic or volcanic 

uplift, erosion of lateral margins; (iii) physical causes (intense rainfall, 

snowmelt, prolonged or exceptional precipitation, rapid drawdown of floods 

and tides, earthquake, volcanic eruption, thawing); and (iv) human causes 

(deforestation, irrigation, mining, artificial vibration, water leakage, land use 

changes) (Alexander, 1992; Cruden and Varnes, 1996; Leroueil, 2001). The 

predisposing factors of a landslide are intrinsic of the local specific conditions 

such as slope angle, soil thickness, slope exposure, slope curvature, land use, 

hydraulic conditions, historical landslides, geomorphological units, lithology, 

tracks and man-made cuts (Di Crescenzo et al., 2008; Pereira et al., 2012). A 

different meaning assumes the term “trigger” which commonly refers to “an 

external stimulus that causes a near-immediate response in the form of a 

landslide by rapidly increasing the stresses, or by reducing the strength of 

slope materials” (Wieczorek, 1996). Landslide main natural triggering factors 

are: 

i. rainfall, in many cases particularly intense or prolonged 

thunderstorms, or a combination of both; 

ii. erosion, caused by the undercutting of the slope due to a river, 

especially during a flood, by bank and lateral erosion in coastal 

settings, especially within clay slopes and fissured material, or by 

surface erosion due to water flow; 

iii. snowmelt, caused by a sudden increase of temperature, that leads to 

rapid melting of the snow pack, infiltration of the water into the 

ground and a rather rapid increase of soil pore pressure; 
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iv. weathering of the bedrock, causing the reduction of material strength 

and the creation of a regolith layer, weaker than the parent rock, which 

may slide; 

v. earthquake, which increases the likelihood of landslides occurrence, 

due to the ground shaking itself or to the induced dilation of soil 

materials, allowing rapid infiltration of water right afterwards; 

vi. volcanism, usually magmatic intrusions and phreatic explosions in 

volcanic edifices or volcanic debris flows (also known as lahars) 

constituted by a deluge of rock, soil, ash, and water. 

As mentioned, each of these factors can cause decrease in shear strength of 

the slopes or increase in driving shear stress (Leroueil, 2001). The processes 

pertaining to the first category are e.g. infiltration due to rainfall, snowmelt, 

irrigation, leakage, and weathering. The processes pertaining to the second 

category are e.g. erosion or excavation at the toe of the slope, surcharging at 

the top, rapid drawdown, impulsive loading, and earthquakes.  

The wide variety of geosystems and geomaterials, the intrinsic difficulty in 

obtaining complete and reliable knowledge of the initial conditions of the 

slope, the complex behavior of materials over time and space, and the 

numerous possible climate conditions make extremely complex the discipline 

of landslide forecasting. However, the identification and modelling of the 

processes that may trigger failures of natural slopes form an essential part of 

landslide hazard and risk assessment studies.  

 

 

1.1.1 Landslide hazard in Italy 

 

Landslide hazard is an extremely widespread problem throughout Italy. The 

increasing incidence of catastrophic events corresponds to a progressive 

increase of the built environment and expansion of the urban settlements, 

which affected the country after the World War II, often in hazardous areas 

(APAT - Dipartimento Difesa del Suolo, 2007; Consiglio Nazionale dei 

Geologi, 2010). For this reason, the interest in such issue has constantly 

grown, leading to several studies and surveys.  

In Italy, the first systematic study on landslides performed by Almagià (1910) 

for the Italian Geographic Society dates back to 1910, but in the eighties the 

research experiences a major boost. 

In 1987, the National Agency for New Technologies, Energy and Sustainable 

Economic Development (ENEA) commissioned to a research group the three-

year project GIANO, regarding the collection, analysis, processing, and 
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interpretation of historical information on the effects produced by extreme 

natural events in Italy, from the year 1000 to 1985. The GIANO project 

resulted in more than 350 records related to landslides (ENEA, 1990). 

In 1989, the National Group for Defence from Hydrogeological Disasters 

(Gruppo Nazionale per la Difesa dalla Catastrofi Idrogeologiche - GNDCI), 

a section of the National Research Council (Consiglio Nazionale delle 

Ricerche – CNR), started an official inventory of the areas historically 

affected by landslides and floods between 1918 and 1990. The so-called 

project AVI (Italian Vulnerated Areas) collected 22000 landslide records 

from 18500 localities by the consultation of newspapers, scientific 

publications, and interviews (Guzzetti et al., 1994). 

In 1992, the National Geological Survey published a major study on 

"Geological and geoenvironmental instability in Italy since World War II to 

1990", edited by V. Catenacci (1992), which collected qualitative and 

quantitative information on the main catastrophic events in the national 

territory. The study reported hydrogeological phenomena occurred in about 

4570 Italian municipalities (56.5% of the total) involving 195000 km2 (65% 

of the total). However, a large part of the landslides data were considered 

unreliable because of the lack of an authority in charge of data collection and 

the publication. 

In 1998, after a catastrophic landslide event in Sarno (Campania region), the 

need to have a complete and homogeneous distribution of landslides records 

throughout the country has strengthened, in terms of both the storage of 

information and the cartographic representation of the phenomena. The 

national Agency for Environmental Protection and Technical Services 

(APAT) and the Autonomous Provinces started the IFFI project (Inventory of 

Landslides in Italy) that provided a detailed and updated picture of the 

landslides in the Italian territory. This project surveyed 470000 landslides 

affecting an area of 20000 km2, the 6.6% of the national territory (updated to 

December 2006) (APAT - Dipartimento Difesa del Suolo, 2007). The IFFI 

project represented both at national and regional levels the opportunity to 

achieve two important goals never faced before: (i) homogenization of the 

geographical, geological and geothematic archives, and (ii) construction of a 

detailed quantitative and qualitative inventory of the landslides distribution. 

The inventory is based on research of historical data, photo interpretation and 

field survey, regularly updating. Data analysis shows that between 1985 and 

2001 approximately 13500 landslides were triggered, with a significant peak 

in the second half of the nineties.  
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Most of the landslides considered had an impact on the built environment, 

namely those who have caused damages and losses to people, properties and 

infrastructures.  

Recent reports showed that, in the period 2002-2010, 196 landslides affected 

about 18500 people, including victims, wounded and displaced persons 

(Consiglio Nazionale dei Geologi, 2010). Furthermore, Guzzetti et al. (2012) 

highlighted that, between 2005 and 2011, all the regions have suffered at least 

one major landslide event, confirming the geographical spread of the 

hydrogeological risk.  

 

 

1.1.2 Landslide hazard in the Marche region 

 

The Marche region is one of the Italian regions most affected by landslides. 

In 2008, the Ministry of the Environment (Ministry of Environment Territory 

and Sea, 2008) identified 245 municipalities with areas of high landslide risk, 

corresponding to 99.6% of the total municipalities of the Region. The study 

carried out in 2008 did not take into account the change in the number of 

municipalities inside the region, due to the passage of some administrations 

to the Emilia Romagna region in 2009 and the merge of others in 2013. The 

areas defined at high hydrogeological criticality (i.e. risk level 3 or 4 out of 

4; hazard level of 3 or 4 out of 4) by the National Plan for the governance of 

Hydrogeological Hazard - PAI (Regione Marche - Autorità di Bacino 

Regionale 2004 and updates) are 955 km2, corresponding to 9.9% of the entire 

Region. The 9.0% of these zones are subject to landslides and the 0.9% are 

subject to flood. 

A first update of the IFFI project was realized after the signing of a new 

agreement between APAT and the Marche region in 2005 (Principi et al., 

2007). The analysis of geomorphological data derived from the Marche IFFI 

project allowed to register for the entire region 42522 landslides, 39788 of 

which were considered “mappable” (landslide area > 1600 m2) and 2735 

“non-mappable” (landslide area < 1600 m2). The total area affected by 

landslides is 1882 km2, covering the 19.4% of the entire Region. 

Considering the density of landslides, i.e. the number of events identified in 

relation to the surface, on a national scale there are 1.56 landslides per square 

kilometer. The Marche region greatly exceed with 4.4 landslides per square 

kilometer (Consiglio Nazionale dei Geologi, 2010). 

Among the provinces, Pesaro-Urbino is seventh in Italy and first in the 

Region for number of recorded events (17317 landslides and 629 km2) 
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(Consiglio Nazionale dei Geologi, 2010; Principi et al., 2007) (Table 2). The 

other records for the provinces existing in that moment (Fermo was not 

operational yet) are Ancona with 8220 landslides and 422 km2, Macerata with 

9118 landslides and 421 km2, and Ascoli Piceno with 7867 landslides and 410 

km2. 

 

PROVINCE LANDSLIDES AREA (km2) 

Pesaro-Urbino 17317 628.53 

Ancona 8220 421.97 

Macerata 9118 420.95 

Ascoli Piceno 7867 410.34 

Table 2 Summary of the landslides data of the IFFI project divided by province (Principi et al., 2007) 

 

Considering the landslide index, defined as the percentage ratio between the 

landslide area and the total area, the provinces with the highest index in the 

Region are Pesaro-Urbino and Ancona (22%), which are among the highest 

in Italy as well (Consiglio Nazionale dei Geologi, 2010). 

Landslide distribution is related to the various lithological, structural and 

morphological characteristics peculiar to the Marche region (Principi et al., 

2007). Mountain areas are affected by landslides often fast and large but with 

sporadic frequency. These phenomena mainly consist of (i) rock falls, located 

in correspondence of the sub-vertical walls of limestone and calcareous marl 

of the Marchean and Umbro-Marchean ridges or in arenaceous-pelitic 

formations (e.g. Laga Formation), and (ii) Deep Seated Gravitational Slope 

Deformations (DSGSD), recognizable by the characteristics scarps, 

counterscarps, trenches, and the irregular pattern of the rocky slopes. The first 

are typical of the province of Ascoli Piceno, while the second type is common 

in the inland areas of Pesaro-Urbino. Moreover, slides are widespread in the 

mountain and the adjacent hilly area, especially in the provinces of Macerata 

and Pesaro-Urbino (each counts more than three thousand phenomena). The 

lithologies involved are the marly interior Marche Basin, the arenaceous 

exterior Marche Basin and the smaller basins consisting of alternating 

arenaceous-pelitic terrains (e.g. Camerino, Pietrarubbia-Peglio-Urbania etc.). 

Moving eastward, the Plio-Pleistocene marine clay soils are mainly interested 

by both flows and slides involving the substrate or the eluvio-colluvial cover. 

Flow is the most frequent type of movement, especially in the Pesaro-Urbino 

province. The two types of landslide mentioned above (flows and slides), 

often in association, can reach considerable sizes and cause serious damage 

to entire towns. From the analysis of the inventory data, landslide index 
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reaches the maximum values in this Plio-Pleistocene hilly area, which extends 

from the east of the ridges to the Adriatic coast (Principi et al., 2007). 

Furthermore, data obtained by the IFFI project correlated with the land use 

map, show that the land use class more characterized by landslides is the 

permanent crops (vineyards, fruit trees, etc...), namely crops not subject to 

rotation that occupy the soil for a long period (Figure 2). Arable lands and 

heterogeneous agricultural areas have also high landslide indexes (> 20%). 

This shows the negative influence that human activity has on the stability of 

slopes in the Marche region. In fact, in recent decades, agricultural soils have 

been used in order to increase the annual production with the introduction of 

mechanized farming techniques and the modification of the characteristics of 

the slopes (removal of plants, removal of hedges and rows). This resulted in 

the transformation of the runoff system and sometimes in the disappearance 

of the drainage network leading to increasing levels of erosion (Principi et al., 

2007). 

 

 

Figure 2 Landslide index representative of each land use class (Principi et al., 2007).  
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1.2 Rationale for this study 
 

This study originated from the need of the Civil Protection Department of the 

Marche region (central Italy) to improve the ability of landslides forecasting 

in the pertaining area. The research intended to propose an innovative 

approach for the development of rainfall thresholds for shallow landslides, 

which could be useful as a support tool for decision making in the procedures 

of the Marche Civil Protection. 

 

Based on the L. 24 February 1992, n. 225, on the “establishment of the 

National Service of Civil Protection”, the activities regarding this service are 

those aimed at the forecast and prevention of various scenarios of risk, the 

rescue of disaster victim population and all other activities needed to 

overcome the emergence.  

The forecast consists of activities directed to the study and determination of 

the causes of hazardous events, the identification of risks and the 

identification of areas subject to the risks. 

The prevention consists of activities designed to prevent or minimize the 

possibility of damage subsequent to natural or human-induced events, based 

on the knowledge acquired during the prevision phase. 

The rescue consists in the implementation of actions aimed at ensuring the 

people affected by the calamitous events of all forms of first aid. 

The overcoming of the emergency consists in the application of the steps 

required to the emergency management, recovery and restoration of normal 

life, in coordination with the pertinent institutional bodies. 

Particularly, the L.R. 11 December 2001, n. 32, on the “Regional system of 

Civil Protection”, regulates all activities for the risk prediction, the prevention 

of life and properties damages, the rescue and the overcome of the emergency 

in the Marche region. In order to pursue these tasks the regional structure may 

avail itself of the Regional Functional Center (CFR) as determined by the 

Prime Minister Directive DirPCM 27 February 2004, on the “Civil protection 

operational guidelines for managing organization and functioning of the 

national and regional warning system for hydrogeological and hydraulic 

risk”. Based on the DirPCM 27 February 2004, the CFRs represent the 

technical-scientific structure of reference and support for the emergency 

management of meteorological, hydrological and seismological risks. They 

are responsible for:  

a) a forecast phase involving the evaluation of the weather, hydrological, 

hydraulic and geomorphological situation expected, supported by 

appropriate numerical modeling, and the estimation of the effects that 
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this situation may lead to the integrity of life, property, settlements 

and the environment;  

b) a phase of monitoring and surveillance, divided into: (i) qualitative 

and quantitative, direct and instrumental observation of the current 

event, (ii) short-term prediction of its effects through the weather 

nowcasting and/or hydrogeological models initialized from 

measurements collected in real time. 

 

The fragility of the Italian territory and in particular of the Marche region (see 

chapters 1.1.1 and 1.1.2) to the landslide hazard, has directed the research on 

the triggering causes of the slope failures to be an important part of the 

activities concerning the Marche Civil Protection Department and, definitely, 

the CFR. Specifically, the underlying motivation for this particular project 

was threefold.  

 

First, the identification of rainfall amounts that lead to landslides may help 

mitigate the loss of life and property damages, therefore the hydrogeological 

risk. When a storm is expected or is passing over a territory, monitoring 

meteorological, hydrological or geotechnical parameters (e.g. rainfall 

duration, soil moisture conditions, or groundwater pore pressure), coupled 

with initiation thresholds defined with statistical or deterministic methods, 

may allow the identification of potentially hazardous (Guzzetti et al., 2005). 

The adoption of rainfall thresholds should lead to anticipate landslide 

occurrence with sufficient confidence to alert agencies who can issue warning 

or alarm messages to civil protection authorities and the population. As an 

example, based on rainfall forecasts, a preliminary assessment of the 

probability that the triggering thresholds will be exceeded can be made. If the 

forecast outlines a potentially critical hydrogeological situation, the alert 

phase can be activated and, in landslide-prone areas, a risk assessment 

procedure can be initiated in real time (Aleotti, 2004). In a few places in the 

world rainfall thresholds are part of operational landslide warning systems in 

which rainfall measurements are compared with established thresholds, and 

when pre-established values are exceeded alarm messages are issued 

(Guzzetti et al., 2005). The activation of a warning system would empower 

individuals and communities exposed to landslides to act in sufficient time 

and in an appropriate manner to reduce the possibility of personal injury, loss 

of life and damage to property and the environment (UNISDR, 2010). 

 

Second, developing models for rainfall induced landslide forecasting may 

provide insights into the process of landslide initiation in the Marche region. 
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The literature on the subject of rainfall triggered mass movements is vast and 

scattered within journals, books, proceedings, internal and technical reports 

pertaining to the realm of different sciences (De Vita and Reichenbach, 1998; 

Wieczorek and Guzzetti, 2000). Every existing predicting method presents 

advantages and limitations in the framework of early warning systems for 

civil protection (Guzzetti et al., 2005). However, each model allows a 

different perspective to successfully define the key input parameters that 

control slope failures, both from the landscape and the climate. For example, 

deterministic models may highlight the role of the slope angle, the infiltration 

rate or the soil storage capacity in decreasing the stability of a hillslope. On 

the other hand, empirical models possibly help in understanding the 

contribution of definite ranges of rainstorm features (e.g. rainfall duration, 

rainfall intensity, critical rainfall, antecedent rainfall, rainfall frequency), in 

activating one or more landslides. Moreover, the combination of these key 

parameters is characteristics of a specific area, or even a single slope, 

depending on its morphological, hydrological, geological, and climatic 

conditions. Therefore, the design of landslide predictive models, calibrated 

and applied in the Marche region, is fundamental to correctly simulate the 

potential unstable areas and to individuate the local threshold settings that 

could be responsible or slope failures within the region.  

 

Third, predicting landslides triggered by rainfall it is important to understand 

and measure how the landscape evolves for the purposes of a proper territorial 

planning. With recent improvements of both rainfall forecasts and digital 

techniques for accurately depicting the topography and modelling the 

hydrologic response, rainfall thresholds could become more useful for 

identifying not only the time, but also the location of potentially damaging 

landslides resulting from intense rainfall (Guzzetti et al., 2005). The threshold 

analysis results can be used as input to estimate the landslide spatial 

probability. The spatial estimation of the consequences of the triggering 

factors, could led to a more adequate construction of susceptibility maps to 

effectively define the landslide hazard of an area. However, this is not the 

ending point of the process. The ultimate objective of a good forecasting 

activity is the landslide risk reduction with a correct territorial planning, 

which takes place when the activities and behavior of populations at risk are 

changed so the consequences of a landslide event result in no or low losses 

(DeGraff, 2012). The susceptibility map represents thus the beginning of an 

educational practice requiring a change in how the affected society behaves. 

Typically, this takes place by translating the information embodied in the 
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rainfall thresholds and consequently in a landslide hazard map, into some 

change in policy and regulation applying to the affected area. 

 

In summary, the landslide forecasting is one of the main role of the Marche 

CFR given the high predisposition of the territory to such hazard. The 

importance of this activity is highlighted by the potential contained in the 

predictive model, such as enhanced knowledge of the mechanisms of 

landslide triggering and mitigation of the hydrogeological risk. 
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2 State of the art on landslides 

forecast 

 

Rainfall is a recognized trigger of landslides, and researchers have long 

attempted to determine the amount of precipitation needed to trigger slope 

failures, a problem of scientific and societal interest. The literature on the 

subject of rainfall-triggered mass movements is vast and scattered in journals, 

books, proceedings, internal and technical reports pertaining to the field of 

different sciences: geomorphology, hydrology, hydrogeology, soil science, 

geography, pedology, agronomy, and forestry among others (De Vita and 

Reichenbach, 1998). Some of the most investigated topics are: (i) types, 

patterns, and causes of widespread landsliding; (ii) modelling slope 

groundwater response to rainfall; (iii) significance, role, extent, and 

availability of thresholds; (iv) usefulness of thresholds for the evaluation and 

mitigation of landslide hazard and risk (De Vita and Reichenbach, 1998).  

 

Landslides triggered by rainfall are caused by the buildup of water pressure 

into the ground (Campbell, 1975; Wilson, 1989). Groundwater conditions 

responsible for slope failures are related to rainfall through infiltration, soil 

characteristics, antecedent moisture content, and rainfall history (Wieczorek, 

1996). Campbell (1975) postulated that infiltration of intense rainfall creates 

temporarily perched aquifers with positive pore water pressures, which 

reduce the effective strength of the superficial soils and initiate the 

landsliding. However, these phenomena are poorly understood, and 

prediction of rainfall-induced landslides is problematic (Campbell, 1975; 

Crozier and Glade, 1999; Larsen and Simon, 1993; Montgomery and 

Dietrich, 1994; Wieczorek et al., 2000).  Moreover, the properties of earth 

materials and the slope conditions may vary greatly over short distances, and 

the timing, location and intensity of triggering events are generally difficult 

to forecast. This heterogeneity is but one of the complicating factors that 

makes difficult to analyze the mechanics of groundwater flow and the 

development of instability with simple stability models (Wieczorek and 

Guzzetti, 2000). For this reason, the relationship between rainfall, water table 

fluctuations and landslide movement is often difficult to establish and the 

prediction of place and time of landslide occurrence is still a challenging 

issue. 
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The key words in rainfall-induced landslides forecasting are rainfall and 

threshold. 

Rainfall is defined as “the total amount of rain that falls in a given area in a 

given period” (Guzzetti et al., 2005). The “critical rainfall” is the rainfall 

measured from the beginning of the event (zero point), i.e. from the time when 

rainfall intensity increases sharply, to the time of the occurrence of the (first) 

landslide (Figure 3). The rapid increase in rainfall intensity results in a sharp 

change in the slope of the rainfall cumulative curve. Duration of the critical 

rainfall event is “the time that elapses from the beginning of critical 

precipitation to activation of the landslides” (Aleotti, 2004).  

 

 

Figure 3 Definition of rainfall parameters (Aleotti 2004) 

 

On the other hand, a “threshold” is defined as “the minimum or maximum 

level of some quantity needed for a process to take place or a state to change” 

(White et al., 1996). A minimum threshold outlines the lowest level below 

which a process does not occur. A maximum threshold represents the level 

above which a process always occur, i.e. there is a 100% chance of occurrence 

whenever the threshold is exceeded (Crozier, 1996).  

For rainfall-induced landslides, a threshold may represent the minimum 

intensity or duration of rain, the minimum level of pore water pressure, the 

soil moisture, the slope angle, the reduction of shear strength, or the 

displacement required for a landslide to take place (e.g. Crozier 1996; 

Reichenbach et al. 1998; Guzzetti et al. 2007). Thresholds can also be defined 
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for other parameters controlling the occurrence of landslides, such as the 

antecedent hydrogeological conditions or the (minimum or maximum) soil 

depth required for failures to take place (Reichenbach et al., 1998). If only the 

triggering rainfall events are considered, most of the authors (including Caine 

1980; Guzzetti et al. 2007) define the threshold as the lower limit beneath 

which landslides never occurs. Others, e.g. Crozier (1999), define the 

threshold as the upper limit above which landslides always occur. If the 

rainfall events that do not cause landslides are also considered, the threshold 

is the limit that best separates triggering from non-triggering rainfall events 

(e.g. Jibson 1989; Corominas et al. 2002; Giannecchini 2005). 

 

Certainly, individual mass movements respond to specific local conditions, 

yet the rainfall threshold methods describing the mechanisms linking rainfall 

patterns and mass movements can be grouped into: (i) empirical (statistical, 

historical) models, and (ii) physical (deterministic, process-based, 

conceptual) models (Aleotti, 2004; Busslinger, 2009; EU-FP7, 2012; Guzzetti 

et al., 2007). 

 

The empirical rainfall threshold models (statistical approach) assess 

relationships between rainfall characteristics (storm mean and maximum 

hourly intensity, storm duration, rainfall amount, and antecedent rainfall) and 

landslides through statistical analysis of historical records (Guzzetti et al., 

2008). The definition of the most critical rainfall conditions depends on the 

soil characteristics and initial state (soil moisture content). In particular, 

shallow landslides and debris flows often occur during, or suddenly after, 

short intense rainfall. Shallow landslides are defined as failures of low 

cohesive soil or regolith, few meters thick (Cruden and Varnes, 1996; Sidle 

and Ochiai, 2006). Data necessary for these models can be obtained from a 

network of weather stations and records of occurred landslides.  

Different types of empirical rainfall thresholds for the possible initiation of 

landslides have been proposed in the literature (Berti and Simoni, 2005; 

Caine, 1980; Cancelli and Nova, 1985; Cannon and Ellen, 1985; Chien-Yuan 

et al., 2005; Coe et al., 2004, 2008; Giannecchini, 2005; Godt et al., 2006a; 

Guzzetti et al., 2007; Larsen and Simon, 1993; Staley et al., 2013; Vennari et 

al., 2014; Wieczorek, 1987). The published thresholds can be classified by 

(Guzzetti et al., 2007): (i) the extent of the geographical area for which they 

were defined, and (ii) the type of rainfall measurement used to establish the 

thresholds. 

Based on their geographical extent, rainfall thresholds can be subdivided as 

(a) global, (b) regional, or (c) local thresholds (Guzzetti et al., 2008). A global 
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threshold attempts to establish a general (“worldwide”) minimum level below 

which landslides do not occur, independently of local morphological, 

lithological, and land-use conditions and of local or regional rainfall pattern 

and history. This threshold is obtained by using the available data from 

different countries. The easiest way to define a global threshold consists in 

tracing a lower limit line embracing all the recorded rainfall conditions that 

resulted in landslides. Global thresholds have been proposed by e.g. Caine 

(1980), Innes (1983), Clarizia et al. (1996), Crosta and Frattini (2000), 

Guzzetti et al. (2005). A regional threshold is defined for areas extending 

from a few to several thousand square kilometers of similar meteorological, 

geological, and physiographic characteristics. Regional thresholds have been 

proposed by e.g. Caine (1980), Larsen and Simon (1993), Jakob and 

Weatherly (2003), Aleotti (2004), Chien-Yuan et al. (2005). These thresholds 

are potentially suited for landslide warning systems based on quantitative 

spatial rainfall forecasts, estimates, or measurements (Guzzetti et al., 2008). 

A local threshold considers the local climatic regime and geomorphological 

setting and is applicable to single landslides or to groups of landslides in areas 

extending from few to some hundreds of square kilometers. Local thresholds 

have been proposed by e.g. Corominas and Moya (1996), Giannecchini 

(2005), Godt et al. (2006b). Regional and local thresholds perform reasonably 

well in the area where they were developed, but cannot be easily exported to 

neighboring areas (Crosta, 1989). Global thresholds are relevant where local 

or regional thresholds are not available, but may result in (locally numerous) 

false positives, i.e. prediction of landslides that eventually do not occur.  

Based on the type of rainfall measurement, rainfall thresholds can be 

subdivided in (Guzzetti et al., 2008): (a) thresholds that combine rainfall 

characteristics of specific events (Brunetti et al., 2010; Cannon et al., 2011; 

Dahal and Hasegawa, 2008; Staley et al., 2013; Vennari et al., 2014), (b) 

thresholds that consider the antecedent conditions (Aleotti, 2004; Chleborad 

et al., 2006; Crozier, 1999; Martelloni et al., 2011; Papa et al., 2013; Terlien, 

1998) and (c) other thresholds, including hydrological thresholds (Jakob and 

Weatherly, 2003; Reichenbach et al., 1998) (see chapter 2.1). 

 

The physical rainfall threshold models (deterministic approach) usually 

combine local geotechnical, hydrological and geomorphological features of 

the slope, such as slope angle, with a steady or transient groundwater flow 

model (Baum et al., 2002; Chen and Zhang, 2014; Crosta and Frattini, 2003; 

Montgomery and Dietrich, 1994; Raia et al., 2014; Segoni et al., 2009). These 

models integrate hydrological models for a simplified description of the 

dynamics of infiltration and saturation phenomena, together with 
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geotechnical approaches for the stability analysis. Physical models usually 

attempt to account for infiltration and vertical movement of water into the 

ground surface, for modelling the longitudinal trend of groundwater. 

The aim of physical models is quantifying (i) the rainfall conditions at which 

shallow landslides can be triggered (e.g. Frattini et al., 2004), (ii) the extent 

of landslides occurrence (i.e., the number of events, the area involved by 

landsliding) (e.g. Crozier and Glade, 1999), and (iii) the time-dependent slope 

stability of potentially sliding surfaces (e.g. Baum et al., 2002). Other studies 

have considered the landslide initiation as a function of dynamic variables as 

the land use changes (e.g. Montgomery and Dietrich, 1994) or slope 

deformation.  

Physically based thresholds are calibrated using rainfall events for which the 

rainfall measurements and the location and time of slope failures are known. 

Physical thresholds are not as widely developed as the empirical thresholds 

and, generally, they require detailed knowledge of the boundary conditions, 

which are seldom available outside specially equipped (with e.g. rain gauges, 

piezometers, tensiometers) test fields. Therefore, the geographical extent of 

physically based thresholds links local or sometimes regional rainfall 

measurements to local terrain characteristics. Recent and sporadic attempts 

towards the definition of physical regional thresholds have been proposed 

using distributed hydrological models (Frattini et al., 2004; Raia et al., 2014). 

 

The availability of data has a key role in the definition of the rainfall 

thresholds as well as the quality (e.g. proximity to study area, spatial and 

temporal resolution, etc.) and the quantity (e.g. number of historical 

information, covered period, etc.), which overall influence the results of the 

analysis (Guzzetti et al., 2005). All these factors ultimately condition the 

choice of the model to be applied to the study area. 
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2.1 Empirical models 
 

Empirical rainfall thresholds are defined by analyzing past rainfall events that 

have resulted in landslides. The methodology applied is a “black box” model, 

in which the complex physical processes involved in landslide initiation are 

ignored and a more simple and functional empirical correlation is found 

between the primarily cause (rainfall) and the effect (landslide) (Martelloni et 

al., 2011). It is assumed that the mathematical relationship that represents the 

threshold, beyond which landslides have occurred in the past, will also trigger 

landslides in the future. 

The thresholds are usually obtained by drawing lower-bound lines to the 

rainfall conditions that resulted in landslides, plotted in Cartesian, semi-

logarithmic, or logarithmic coordinates. The curves can be drawn visually or 

by statistical techniques. Frequently, the thresholds are defined using ill-

formalized, poorly documented, or non-reproducible methods (Guzzetti et al., 

2007). Where information on rainfall conditions that did not result in slope 

failures is available (e.g. Lumb 1975; Jibson 1989; Corominas and Moya 

1999; Marchi et al. 2002; Giannecchini 2005), thresholds are defined as the 

best separators of rainfall conditions that resulted and did not result in slope 

instability. The number of the triggered slope failures (e.g., single vs. multiple 

events) can also be considered to construct a threshold. 

Review of the literature (Busslinger, 2009; Guzzetti et al., 2007, 2005; 

Wieczorek and Guzzetti, 2000) reveals that no unique set of measurements 

exists to characterize the rainfall conditions that are likely (or not likely) to 

trigger slope failures. The most commonly investigated rainfall parameters 

and climate variables used in the literature for the definition of empirical 

thresholds are (Guzzetti et al., 2008):  

(i) rainfall duration (D), first introduced by Caine (1980) and defined 

as the duration of the rainfall event (in h or days); 

(ii) rainfall intensity (I), first introduced by Caine (1980) and defined 

as the total rainfall amount divided by the duration of the rainfall 

event (in mm/h);  

(iii) maximum hourly rainfall intensity (IMAX), first introduced by 

Onodera et al. (1974) (in mm/h), defined as the hourly peak of 

precipitation during the rainfall event; 

(iv) cumulative event rainfall (E), first introduced by Innes (Innes, 

1983) and defined as the total rainfall measured from the 

beginning of the rainfall event to the time of failure (in mm);  

(v) critical rainfall (C), first introduced by Govi and Sorzana (1980) 

and defined as the total amount of rainfall from the time of  distinct 
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increase in rainfall intensity to the time of the triggering of the first 

landslide (in mm); 

(vi) daily rainfall (R), first introduced by Crozier and Eyles (1980) and 

defined as the total amount of rainfall for the day of the landslide 

event (in mm); 

(vii) antecedent rainfall (AD), first introduced by Govi and Sorzana 

(1980) and defined as the total precipitation measured before the 

landslide triggering rainfall event (in mm); D indicates the 

considered period in days;  

(viii) mean annual precipitation (MAP), first introduced by Guidicini 

and Iwasa (1977) and defined as the long term yearly average 

precipitation measured in a rain gauge, obtained from historical 

rainfall records (in mm); 

(ix) average number of rainy days in a year or rainfall frequency 

(RDS), first introduced by Wilson and Jayko (1997) and defined 

as the long term yearly average of rain days (i.e. a day with at least 

0.1mm of rain) measured in a rain gauge, obtained from historical 

rainfall records. 

Many authors use different definitions and combinations of these parameters, 

specific and calibrated for the studied area. Thresholds were defined in 

literature considering for example (Guzzetti et al., 2005): (a) mean rainfall 

intensity for the event; (b) maximum rainfall intensity for the duration of the 

event; (c) rainfall intensity at the time of the slope failure; (d) duration above 

a pre-defined intensity level; (e) cumulative rainfall, with or without the exact 

indication of the time of the slope failure; (f) intensity or cumulative rainfall 

normalized to MAP; (g) rainfall intensity normalized to the ratio between 

MAP and the yearly number of rainy days; (h) antecedent rainfall, for 

different time intervals before the occurrence of the landslide or before the 

starting time of the event; and (i) daily rainfall versus antecedent soil water 

status index. Moreover, these very classifications may be subject to different 

interpretations. As an example, rainfall intensity is the amount of precipitation 

accumulated in a period, or the rate of precipitation in a period, most 

commonly measured in millimeters per hour. Depending on the length of the 

observation period, rainfall intensity may represent an “instantaneous” 

measure of the rainfall rate, or an average value of precipitation over hours 

(hourly intensity), days (daily intensity), or longer periods. For long 

observation periods, rainfall intensity represents an “average” value that 

underestimates the peak (maximum) rainfall rate occurred during the 

observation period. Hence, rainfall intensity measured over short and long 

periods have different physical meaning (Guzzetti et al., 2007). For this 
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reason, language inconsistencies and disagreement on the requisite rainfall 

and landslide variables have negative consequences for the possible use of 

the thresholds, complicating the definition of rainfall models and making 

difficult the comparison.  

 

As previously mentioned, empirical rainfall thresholds can be grouped in 

three categories (Guzzetti et al., 2007, 2005): (i) thresholds that consider 

rainfall characteristics of specific events, (ii) thresholds that consider the 

antecedent conditions, and (iii) other thresholds.  

 

 

2.1.1 Thresholds that consider rainfall characteristics of specific 

events 

 

The majority of the thresholds established using precipitation measurements, 

obtained from individual or multiple rainfall events, can be grouped in: (a) 

intensity – duration (ID) thresholds, (b) thresholds based on the cumulative 

event rainfall (E), (c) event rainfall – duration thresholds (ED), and (d) event 

rainfall – intensity (EI) thresholds. 

 

The empirical models based on the intensity-duration (ID) approach are 

thoroughly documented in the literature (Aleotti, 2004; Brunetti et al., 2010; 

Cannon et al., 2011; Chleborad et al., 2006; Corominas et al., 2002; 

Giannecchini et al., 2012; Godt et al., 2006a; Guzzetti et al., 2008; Papa et al., 

2013; Peruccacci et al., 2012; Rappelli, 2008; Staley et al., 2013; Wieczorek, 

1987). The first study to relate these rainfall thresholds to landslide initiation 

was published by Caine (1980). In this landmark paper, Caine listed 73 

rainfall duration and intensity conditions that had resulted in shallow 

landslides (< 3 m deep) and debris flows worldwide. Using local precipitation 

records, he defined an upper threshold for landslide initiation as: 

 

𝐼 = 14.82𝐷−0.21  (1) 

 

where I is rainfall intensity (mm/h) and D is rainfall duration (h). These data 

fit for precipitation between 10 min and 10 days in duration, and poorly fit 

for longer or shorter durations. He suggested that the lack of fit for very short 

durations resulted from insufficient depths of water to change pore water 

pressure. Data were compiled from a variety of climatic and geologic 

conditions. As a result, the rainfall intensity-duration estimates are non-
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homogeneous. Moreover, Crozier (1996) pointed out that Caine’s dataset 

does not include climatic events that did not trigger landslides, which is an 

equally important statistic. Despite this limitation, since the pioneering work 

of Caine, information on the rainfall ID conditions that have resulted in slope 

failures was collected at various sites or regions worldwide, and different 

rainfall ID thresholds were proposed at the local, regional, and global scales 

(for a reference list see Guzzetti et al. 2007). The threshold functions assumes 

now the form of the following equation: 

 

𝐼 = 𝑐 + 𝛼𝐷−𝛽  (2) 

 

where 𝑐 ≥ 0, α and β are empirical parameters of the specific site conditions. 

α is a scaling parameter (the intercept), and β is the shape parameter that 

controls the slope of the power law threshold curve. 

Significant differences between the thresholds exists. The listed ID thresholds 

(Guzzetti et al., 2007) span a considerable range of rainfall durations and 

intensities. For the majority of the ID thresholds 𝑐 = 0. When 𝑐 = 0 equation 

(2) is a simple power law. Additionally, all the listed power laws have 

negative scaling exponents (β). The negative power law relation suggests a 

similar scaling behavior of the rainfall conditions that result in landslides. 

However, this simple trend has a conceptual limitation: for very long periods, 

even extremely small average rainfall intensities may result in landslides, a 

condition difficult to justify.  The differences among the thresholds can be 

explained by the fact that they are based on data sets from areas with different 

geological, geomorphological, and climatic settings. As an example, Brunetti 

et al. (2010) defined ID thresholds for Italy and for the Abruzzo region, 

central Italy. The regional ID threshold for Abruzzo was found to be lower 

than the threshold defined for Italy, and lower than similar regional ID 

thresholds defined for areas in northern Italy (Aleotti, 2004; Ceriani et al., 

1994) or in southern Italy (Calcaterra et al., 2000). 

The ID approach can be further refined by normalizing the intensity value by 

the mean annual precipitation (MAP) (Govi et al., 1985). This emphasizes the 

regional character of a threshold, taking into account the local climate regime 

and the season of occurrence. Following Govi et al. (1985), several authors 

investigated the relationship between rainfall duration and rainfall intensity 

normalized by MAP (Aleotti et al., 2002; Bacchini and Zannoni, 2003; 

Cannon, 1988; Ceriani et al., 1994; Dahal and Hasegawa, 2008; 

Giannecchini, 2006).  
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The empirical models based on the cumulative event rainfall (E) approach 

have been attempted by few authors (Campbell, 1975; Cannon and Ellen, 

1985; Cardinali et al., 2006; Corominas and Moya, 1999; Govi and Sorzana, 

1980; Guidicini and Iwasa, 1977; Hong et al., 2005; Innes, 1983; Lumb, 1975; 

Terlien, 1998). These thresholds represents the minimum amount of rainfall 

necessary to trigger at least a landslide in the considered area. For example, 

for Nilsen and Turner (1975) a minimum precipitation of 177.8 mm is 

sufficient to initiate abundant shallow landslides in Contra Costa County 

(California, USA), whereas for Mark and Newman (1985) the threshold in 

San Francisco Bay region (California, USA) is 254 mm.  Corominas and 

Moya (1999), differentiate the threshold depending on the time elapsed: E 

minimum is 180-190 mm if the event lasts 24-36 h or is 300 mm if the event 

lasts 24-48 h. The problem is identify the critical rainfall that define the 

rainfall event. In Canuti et al. (1985) the event is 1-3 days long, while in 

Bhandari et al. (1991) is always 3 days long. 

Different rainfall variables have been combined to the E parameter for the 

definition of these thresholds, including: (i) daily rainfall (R) (Campbell, 

1975; Corominas and Moya, 1996; Lumb, 1975), (ii) antecedent rainfall (AD) 

(Lumb, 1975; Pasuto and Silvano, 1998; Sorriso-Valvo et al., 1994); and (iii) 

normalized cumulative event rainfall (EMAP), often expressed as a percentage 

of the MAP.  According to the last type of thresholds, if the total precipitation 

during a rainfall event exceeds an established percentage of the MAP, 

landslides are likely to occur, or to occur abundantly. As an example, 

Guidicini and Iwasa (1977), working in Brazil, determined that when the total 

event rainfall exceeded 12% of the MAP landslides were likely to occur 

independently of the antecedent conditions, whereas when the total event 

rainfall ranged from 8% to 12% of the MAP landslides initiation was 

dependent on rainfall history. Similarly, Govi and Sorzana (1980), working 

in the Piedmont region of NW Italy, discovered that areas characterized by 

large MAP required a higher amount of rainfall to trigger slope failures than 

areas characterized by lower MAP. Moreover, Bhandari et al. (1991), 

determined that in Sri Lanka when the precipitation is inferior to the 5% of 

the MAP, the probability of landslides is low. 

 

On the other hand, numerous investigators have related measures of the 

cumulative event rainfall to the duration of the rainfall events, thus defining 

event rainfall – duration (ED) thresholds (Aleotti, 2004; Caine, 1980; 

Corominas and Moya, 1999; Giannecchini, 2006; Innes, 1983; Wilson, 1989). 

In general, the method assumes that the threshold curve is a power law: 
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𝐸 = 𝛼𝐷𝛾  (3) 

 

where E is the cumulated event rainfall (mm), D is the duration of the rainfall 

event (h), α and γ are the equivalent of the α and β parameters of the ID 

thresholds (𝛾 = −𝛽 + 1).  

For example, Innes (1983) used information on 35 rainfall events that had 

resulted in debris flows worldwide to establish a first global minimum ED 

threshold for possible debris flow occurrence. The threshold was in the form 

of the power-law equation, valid for duration from 0.1 to 100 h:  

 

𝐸 = 4.93𝐷0.504  (4) 

 

More recently, Kanji et al. (2003) collected information on the rainfall 

conditions that resulted in landslides in several geographical areas worldwide, 

and proposed the global minimum ED threshold  

𝐸 = 22.4 × 𝐷0.41.  

Several other thresholds have been determined also in regional and local 

scales. Peruccacci et al. (2012) compiled a new catalogue of 442 rainfall 

events that triggered landslides in the Abruzzo, Marche, and Umbria regions, 

central Italy, between 2002 and 2010, and proposed ED thresholds for the 

entire study area, for the three administrative subdivisions, for the main 

lithological domains, and for different seasonal periods. The cumulated 

rainfall necessary to trigger landslides in the studied area was slightly larger 

for flysch deposits than for soft post-orogenic sediments (clay, silt, sand, 

gravel) and for sedimentary carbonate rocks. Vennari at al. (2014) adopted 

the procedure proposed by Brunetti et al. (2010) and modified by Peruccacci 

et al. (2012) to evaluate the uncertainty associated with the thresholds. They 

determined new regional ED thresholds for possible shallow landslide 

occurrence in Calabria (Italy) for the 1% and the 5% exceedance probability 

levels. Results showed that for short rainfall durations (D≤24 h), lower 

amounts of cumulated event rainfall are required to trigger landslides in the 

Tyrrhenian (western) alert region than in the Ionian (eastern) alert region. 

The thresholds modeled in literature present similar ascending trends (γ > 0) 

and exhibit comparable fixed or changing gradients, but differ significantly 

in the minimum amount of rainfall required to trigger landslides. This is 

mainly attributable to the different climates of the considered regions. 

 

Finally, the empirical models based on event rainfall – intensity (EI) 

thresholds and normalized EI thresholds have been pursued (Aleotti et al., 

2002; Bacchini and Zannoni, 2003; Giannecchini, 2005; Govi et al., 1985; 
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Heyerdahl et al., 2003; Hong et al., 2005; Jibson, 1989; Onodera et al., 1974). 

The general form of the equation describing the relationship is a power law: 

 

𝐼 = 𝛼𝐸−𝛽  (5) 

 

where I is the rainfall intensity (mm/h), E is the cumulated event rainfall 

(mm), and α and β are the equivalent of the α and β parameters of the ID 

thresholds. 

Onodera et al. (1974) were the first to propose EI quantitative rainfall 

thresholds for the initiation of shallow landslides in Japan, suggesting a set of 

thresholds (upper, intermediate and lower) linking the maximum hourly 

rainfall intensity to the cumulative event rainfall. Govi and Sorzana (1980) 

adopted a slightly different approach and linked the average rainfall intensity 

during the final phase of the storm (i.e., the period when landslides occurred) 

to the critical event rainfall, normalized to the MAP. These authors found 

linear (in Cartesian coordinates) and complex relationships, depending on 

landslide abundance, on the season of the event, and on the antecedent rainfall 

conditions. 

 

 

2.1.2 Thresholds that consider the antecedent conditions 

 

Much of the scientific literature considers the antecedent conditions to define 

landslide empirical thresholds based on the amount of the antecedent rainfall 

(Aleotti, 2004; Chleborad, 2000; Crozier, 1999; Gabet et al., 2004; Glade et 

al., 2000; Jaiswal and van Westen, 2009; Kim et al., 1991; Lumb, 1975; 

Sengupta et al., 2010; Terlien, 1998). In fact, antecedent precipitation 

influences groundwater levels and soil moisture thus predisposing slopes to 

failure (Crozier, 1996; Wieczorek, 1996). However, the geographical pattern 

and the temporal evolution of groundwater and soil moisture are difficult to 

know precisely, as they depend on various mutable factors, including 

heterogeneity of soils (strength and hydraulic properties) and regional climate 

(Guzzetti et al., 2005). Because of this local variability, when using 

antecedent rainfall measurements to predict landslide occurrence, a key 

difficulty is the definition of the period to be taken into account for the 

accumulated precipitation (Guzzetti et al., 2007; Martelloni et al., 2011).  

Very different methods and time intervals have been considered, ranging 

from a few days (Heyerdahl et al., 2003; Kim et al., 1991) to a few months 

(Cardinali et al., 2006; De Vita, 2000; Galliani et al., 2001).  
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A simple way of using antecedent precipitation measurements consists of 

establishing a threshold based on the amount of the antecedent rainfall, but 

more composite correlations have been proposed between the antecedent 

precipitation and the event or daily rainfall (Guzzetti et al., 2007). 

 

In NW Italy, Govi et al. (1985) determined that the 60-day antecedent rainfall 

needed to trigger landslides varied seasonally with a minimum value of 140 

mm, and that the sum of antecedent and event rainfall needed to initiate slope 

failures was at least 300 mm.  

Kim et al. (1991) studied the correlation between daily rainfall at failure and 

the 3-day cumulative rainfall before the failure, in Korea. They showed that 

landslides plotted above the threshold were mainly governed by the rainfall 

intensity at failure, whereas landslides below the threshold were conditioned 

by cumulative antecedent rainfall. A diagonal line in a daily rainfall - 3-day 

cumulative rainfall chart, represented the threshold. 

In 1986, Crozier proposed a formula to weight the antecedent rainfall: 

 

𝐶𝐴𝑅𝑋 = 𝐾𝑃1 + 𝐾2𝑃2 + ⋯ 𝐾𝑛 𝑃𝑛  (6) 

 

where CARX is the calibrated antecedent rainfall for day x; P1 is the daily 

rainfall for the day before day x; Pn is the daily rainfall for the nth day before 

day x. The constant K is an empirical parameter that accounts for the 

decreasing effect of a particular rainy event over time, usually considered 

between 0.8 and 0.9 depending on the draining capacity of the material and 

the hydrological characteristics of the area. This constant makes rainfall 

occurring more than 30 days before a landslide event to become negligible 

(Capecchi and Focardi, 1988). Therefore, this formula allow considering a 

maximum of 30-day period of antecedent rainfall. 

Terlien (1998), working in Colombia, related the normalized daily rainfall to 

the normalized antecedent rainfall tested for 2-, 5-, 15- and 25-days. He found 

that antecedent rainfall of 25 days provided the best separation between days 

with and days without landslides. However, for those landslides triggered by 

high daily rainfall amounts (normalized daily rainfall exceeding 0.9, 

corresponding to a daily rainfall of 70 mm) a window of 15 antecedent rainfall 

days would be sufficient. The depth of the failure surface can partly explain 

the difference in the number of antecedent days. Precisely, the 15-day period 

window was related to shallow landslides with a maximum failure surface 

depth of ~2 m, whereas the 25-day period window was related to failure 

surface depth of ~6 m. 
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Chleborad (2006; 2000), in a study in the Seattle area (Washington), defined 

an antecedent rainfall threshold in a scattered plot showing 3-day 

precipitation amounts (P3) that occurred immediately prior to the landslides 

and antecedent 15-day cumulative precipitation (P15) that occurred prior to 

the 3 considered days. The approximate lower-bound precipitation threshold 

was defined by the equation: 𝑃3 = 0.67𝑃15 + 3.50. 

De Vita (2000), studying an area in Campania (Southern Italy), correlated the 

total daily rainfall (R) to the antecedent rainfall for periods from 1 to 60 days. 

This author established that, for antecedent precipitation in the range between 

1 and 19 days before the landslide event, the daily rainfall needed to trigger 

landslides decreases with the amount of the antecedent precipitation. If longer 

periods were considered, the daily rainfall required to initiate landslides first 

decreased and then flattened at about 50 mm. 

In a proximal area, Aleotti (2004), investigated the correlation between 

critical rainfall and antecedent periods of 7 and 10 days by tracing curves 

separating the 90% of the rainfall events. However, throughout this study he 

could not identify a significant correlation between antecedent rainfall and 

critical rainfall. 

Gabet et al. (2004) combined the daily rainfall with the total rainfall since the 

beginning of the monsoon season in Nepal. They found that a minimum 

seasonal rainfall (528 mm) must accumulate and a minimum daily rainfall (9 

mm) must be exceeded to bring the regolith up to field capacity (the soil 

moisture beyond which gravity drainage ensues), so that future rainfall may 

produce positive pore pressures and trigger landslides. 

Zêzere et al. (2005) performed the analysis in the Lisbon area (Portugal) 

calculating the cumulative absolute antecedent rainfall (CAR) (after Crozier 

1986) for 1, 5, 10, 15, 30, 45, 60, 75 and 90 consecutive days prior to the dates 

of confirmed landslide activity during a 45 years period. The best results 

obtained for shallow landslide episodes correspond to an exponential law 

(𝑅 = 167.28𝑒−0.0355𝐶𝐴𝑅) for the 5 days CAR, while deep landslide events 

are better discriminated by combined threshold of R=16mm and 30 days 

CAR=85mm.  

Cardinali et al. (2006) found a correlation between landslides occurred in SW 

Umbria, central Italy, with antecedent rainfall exceeding 590 mm over a 3-

month period, or 700 mm over a 4-month period. 

Walker (2007) applied a method to data series from Australia, formed from 

the daily rainfalls and anterior cumulative totals for 2, 5, 10, 20, 30, 60 and 

90 days. Days on which multiple landslides are likely to occur are often 

related with 30 to 60 day antecedent rainfall.  
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Martelloni et al. (2011) developed a decisional algorithm for the forecast of 

landslides in Emilia Romagna region (central Italy). This system considers 

the cumulative rainfall up to 2 days before the day of analysis (included) in 

case of shallow landslide, and the cumulative rainfall from 4 days up to 63-

245 days before the day of analysis (included) in case of deep-seated 

landslide. The different intervals account for lithological and hydrogeological 

conditions of the study area. In permeable terrains, pore water pressure reacts 

rapidly to rainfall, while in the case of low-permeability terrains the 

antecedent rainfall is more important. In addition, hydrological response for 

deep-seated landslides and for terrains with low hydraulic conductivity is 

governed by more complicated mechanisms, which are quite difficult to 

model with a statistical black box approach. Martelloni verified that the long 

period of cumulative rainfall generated much more false alarms than the short 

period. 

Tiranti et al. (2013) modified the Govi et al. (1985) diagram with new data 

and with the introduction of the snow melt as a fraction of antecedent rainfall. 

The importance of snow dynamics in the calculation of the antecedent 

precipitation has been demonstrated especially in sedimentary environments. 

 

Some authors debated the importance of the antecedent precipitation for the 

initiation of landslides because the correlation between the antecedent rainfall 

and the occurrence of slope failures could not be found (Aleotti, 2004; Brand 

et al., 1984), or the antecedent precipitation had not significance for soils with 

large interparticle voids (Brand, 1992; Corominas and Moya, 1999). In fact, 

the relationship between antecedent rainfall and landslide occurrence assumes 

importance if only applied within a defined region with homogeneous 

geological and climatological features and cannot be exported to other regions 

(Pignone et al., 2005).  

 

 

2.1.3 Other thresholds 

 

Other types of thresholds, which may also combine the variables listed in the 

previous categories, have been proposed in the literature for the initiation of 

landslides (Guzzetti et al., 2005).  

For example, Govi and Sorzana (1980) correlated the cumulative event 

rainfall (E) normalized by MAP to the severity of the event in terms of 

number of landslides triggered per km2. 
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Ayalew (1999), working in Ethiopia, proposed a regional threshold called Lf, 

which is the likelihood of occurrence of failure. The Lf factor is so 

determined: 

 

𝐿𝑓 = 𝐾
𝑋

𝑌
× 100%  (7) 

 

where K is a ratio of the total number of days up to the date of analysis with 

a rainfall > 5mm and the mean annual number of rainy days in the area (or in 

the nearby recording station). Days with a rainfall ≤ 5mm are considered as 

if there was no precipitation because is assumed to be lost by evaporation. X 

is the cumulative precipitation recorded up to the date of analysis (E); Y is 

the mean annual precipitation in the area (MAP). The ratio between X and Y 

is used to address the effect of rainfall duration on the variation of the 

moisture content and the pore water pressure of soils. It is shown that when 

Lf  < 15% landslides are not expected, when 15 < Lf  < 30%  cracks and other 

signs of slope movement are observed, while Lf  > 30% indicates a much 

greater probability of landslide occurrence. 

Wilson (2000) related the maximum 24-hour rainfall amount from storms that 

triggered debris flows in some U.S. countries to the maximum 24-hour 

rainfall expected in a 5-year return period. He proposed that the probability 

of debris flow occurrence was a function of the daily rainfall (R) normalized 

by the 5-year storm rainfall. 

Aleotti et al. (2002) defined three regional logarithmic thresholds, for shallow 

landslides in the Piedmont region in Northern Italy, using the rainfall intensity 

normalized by MAP (NI) and the critical rainfall normalized by MAP (CN). 

They found (i) a threshold for high-magnitude events, (ii) a general critical 

threshold, and (iii) a threshold for low-magnitude events. 

Bacchini and Zannoni (2003) proposed two local thresholds for debris flow 

(Dolomites, NE Italy), based on (a) the triggering rainfall normalized by MAP 

related to the mean intensity (I > 2mm/h), and (b) the rainfall intensity 

normalized by MAP related to the duration.  

Jakob and Weatherly (2003) established hydroclimatic regional thresholds for 

the occurrence of slope failures in the British Columbia, following 

Reichenbach et al. (1998). The model presented attempted to predict landslide 

initiation by combining precipitation data with streamflow records from a 

small watershed that responds quickly to water input. They analyzed 

hydroclimatic variables from 25 storms that triggered shallow landslides on 

the study area, and an equal number of storms of comparable magnitude that 

failed to trigger shallow landslides. The three discriminant variables selected 

are: (i) total precipitation over a 4-week period prior to a storm, (ii) maximum 
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rainfall in a 6-h period during a storm, and (iii) the number of hours in which 

the basin discharge exceeded 1 m3/s. Based on the three selected variables, 

Jakob and Weatherly (2003) established warning and initiation thresholds for 

debris flows and shallow landslides. 

Cepeda et al. (2009), worked on a new local rainfall threshold function based 

on a generalization of the Caine (1980) power law: 

 

𝐼 = [𝛼1𝐴𝑛
𝛼2]𝐷𝛽  (8) 

 

where I and D are defined as Caine, the expression in parentheses is 

equivalent to Caine’s α parameter, α1, α2 and β are parameters estimated for 

the threshold, An is the n-days cumulative rainfall. Equation (8) accounts for 

the effects of the antecedent precipitation and requires a calibration of the 

value of ‘n’. Cepeda et al. (2011) proposed a local application of the IAD 

model for slides, whose improved performance is achieved with triggering 

rainfall from 3 to 17 h and antecedent rain of 50 days. They also found that, 

for debris flows with triggering rainfall from 1 to 9 h, a traditional ID 

threshold is sufficient with no need of antecedent rain. 

 

 

2.1.4 A probabilistic approach 

 

In a purely empirical definition of a threshold is implied that, when its value 

is crossed, a radical change of state within a system will occur and this change 

often manifests suddenly (Berti et al., 2012). Therefore, the state of the system 

can be predicted by comparing the input value (or a set of input values) with 

the threshold. This approach imply also that there is a binary possible output 

(above or below the threshold) since no randomness is involved in the 

development of future states of the system (Berti et al., 2012). Consequently, 

this method can be successfully used to define a rainfall threshold in the ideal 

conditions in which the activation mechanism is directly controlled by 

rainfall, such as debris flows in coarse granular material that are initiated by 

channel runoff (Aleotti, 2004; Berti and Simoni, 2005; Caine, 1980; Ceriani 

et al., 1994; Coe et al., 2008). In these cases, the separation between rainfall 

that triggered and rainfall that did not triggered landslides is clear. 

However, although exceedance of the precipitation threshold is necessary for 

inducing movements, it is not sufficient to trigger a slide, especially when the 

model is applied to complex or deep-seated landslides (Floris and Bozzano, 

2008; Guzzetti et al., 2005; Pignone et al., 2005). For these landslides, 
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stability conditions are controlled by a combination of hydrogeological and 

time-dependent driving forcing, such as the soil moisture near the surface, 

pores distribution of pressure, atmospheric agents, softening of the materials, 

and long-term changes in the field of stress (Aleotti and Chowdhury, 1999; 

Leroueil, 2001; Montgomery and Dietrich, 1994). In these cases, the 

distinction between critical and non-critical precipitation is not sharp. Hence, 

is necessary to estimate the uncertainty and to correlate a given rainfall event 

to the probability of landslide occurrence. 

 

Empirically-based probability models are mathematical models that use 

historical records of landslide occurrence to predict the temporal probability 

of future landslides (Coe et al., 2004), dealing with the limitations to our 

knowledge of natural processes (Crovelli, 2000). In the attempt to reduce the 

subjectivity of the definition of a threshold, probability models are 

advantageous for several reasons. First, they incorporate variability and 

uncertainty, providing a quantitative assessment of threshold reliability 

(Bean, 2009). In fact, when a threshold is exceeded a purely empirical 

approach do not account for the possibility of non-landslide occurrence, 

whereas a probabilistic approach considers the distribution of non-triggering 

rainfall. Moreover, these models allow to estimate the probability of extreme 

events which correspond to the tail of probabilistic distributions (Berti et al., 

2012). Finally, probability models are widely used for susceptibility 

assessment analysis, to determine the probability of occurrence of a landslide 

with a magnitude greater (or lower) than an arbitrarily chosen reference 

amount, within a specific time period and at a given location (Coe et al., 2004; 

Crovelli, 2000; Motamedi and Liang, 2013). The results of the empirically 

based analyses are typically portrayed using Geographical Information 

Systems (GIS) (J.W. Godt et al., 2008). 

 

Several authors used probability method (e.g. binomial distribution, Poisson 

distribution) for the calculation of objective and reproducible rainfall 

threshold for the possible occurrence of rainfall-induced landslides (Ayalew, 

1999; Berti and Simoni, 2012; Brunetti et al., 2010; Chleborad, 2000; Floris 

and Bozzano, 2008; Glade et al., 2000; Guzzetti et al., 2005; Motamedi and 

Liang, 2013; Reichenbach et al., 1998). One of the most applied approach is 

the statistical Bayesian inference. Bayesian inference is a method in which 

“Bayes' theorem is used to invert conditional probabilities” and “revise or 

update subjective probabilities consistent with new information” (Wilks, 

2011).  
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The first to propose the application of the Bayesian inference method, to 

determine global and regional ID thresholds, were Guzzetti et al. (2005). 

Initially, they collected intensity-duration data of rainfall events that resulted 

in at least a landslide worldwide and they treated them as independent events. 

Then, they computed:  

i. the likelihood as the probability that all the inventoried events would 

cause the observed landslides; 

ii. the a priori idea of the parameter values distribution, then revised by 

the model looking at the observed data; 

iii. the posterior probability distribution. 

Guzzetti et al. (2005) hypothesized the Pareto distribution as the a priori 

distribution, suggesting a power law probability for the random event. The 

proposed global threshold is lower than Caine (1980) and Innes (1983), but 

similar to Crosta and Frattini (2000) in the range of rainfall durations between 

20 and 60 h. They further computed new regional thresholds for different 

climatic scenarios using the Bayesian model, showing a link between climatic 

regime and rainfall thresholds. 

In 2007, Guzzetti et al., proposed another Bayesian approach to define an ID 

threshold for Central and Southern Europe. First, they selected the threshold 

curve, in the form of the power law proposed by Caine (1980). Second, they 

used a probability model to find acceptable ranges of the prior probability 

distributions of the scale (intercept, α) and the shape (slope, β) of the curve. 

Hence, after some experimentation, prior probability distributions for α and β 

were chosen. Estimated values of α and β were then obtained through 

Bayesian inference of their posterior probability distributions, given the 

model results and the empirical data. The same procedure was used to infer 

global normalized-ID thresholds in Guzzetti et al. (2008) and regional ID 

thresholds in Brunetti et al. (2010). 

Berti et al. (2012) proposed a new application of the Bayesian probability. In 

this approach the Bayes’ theorem is applied to compute the posterior 

probability P(A|B), i.e. the conditional probability of occurrence of a 

landslide (A) given a rainfall episode of a fixed amount (B). The formulation 

of the theorem is: 

 

𝑃(𝐴|𝐵) =
 𝑃(𝐵|𝐴)⋅𝑃(𝐴)

𝑃(𝐵)
   (9) 

 

where P(B|A) is the likelihood, i.e. the conditional probability of observing a 

certain rainfall event when a landslide occurs; P(A) is the prior probability, 

i.e. the probability that a landslide occurs independently of the rainfall event; 
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P(B) is the marginal probability, i.e. the probability of observing a rainfall 

event of a certain magnitude independently of the occurrence of a landslide. 

The method is computed in terms of relative frequencies and returns a value 

of landslide probability (from 0 to 1) for each combination of the selected 

variables (A and B). 

 

 

2.1.5 Advantages and limitations of the empirical models 

 

The main advantage of empirical rainfall thresholds lays in the fact that the 

approach is useful and practical. Therefore, empirical models are more 

suitable for the development of rainfall thresholds at regional, national, or 

global scale (Martelloni et al., 2011). 

The calculation of this empirical landslide-triggering rainfall threshold 

requires both spatial and temporal information on landslide frequency and 

rainfall values. Rainfall necessary data can be obtained with a relatively 

simple and affordable network of weather stations, even over large areas. 

Where information on landslides and rainfall is available, plots can be 

prepared and threshold curves can be easily fitted as lower or upper bounds 

for the occurrence of slope failures (Guzzetti et al., 2005). 

Moreover, a large and various number of threshold models exist in literature 

so that the current methodologies are widely tested (Wieczorek and Guzzetti, 

2000).   

 

On the other hand, several limitations for the application of empirical rainfall 

thresholds are evident. The main disadvantages refers mostly to the 

availability of data of adequate quality, resolution and recording length. 

Records of landslides demonstrate that rainfall thresholds are often exceeded 

without giving rise to any slope movement. Therefore, a detailed inventory of 

landslides must be compiled before and after the events to develop and 

calibrate the thresholds. Indeed, a single event may be so intense (“extreme” 

i.e., with a return period exceeding 100 years) as not to be representative of 

the local instability conditions. Thresholds based on extreme events can 

underestimate the probability of failures (Guzzetti et al., 2005). Hence, a long 

record of rainfall measurements and many events resulting from different 

meteorological conditions should be analyzed to define reliable rainfall 

thresholds. Unfortunately, information on an acceptable number of events is 

seldom available. 
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Another limit is the poor quality of accessible data on which the empirical 

methods are based (homogeneity and completeness, landslide timing, rainfall 

data resolution and rain gauge location). This issue may cause a degree of 

uncertainty that can be addressed by complementing the rainfall threshold 

information with probabilities of landslide occurrence (Jaiswal and van 

Westen, 2009).  

Also, given that rainfall is not the only factor that causes landslides, the 

method used to identify and describe the rainfall event may increase 

uncertainty. Many authors either do not specify the criteria used for rainfall 

definition or generally refer to “the beginning of a rainfall event”. However, 

qualitative criteria for rainfall identification leave room to subjectivity and 

impair comparison of results. Only few authors addressed the problem of 

rainfall identification (Aleotti, 2004; Berti et al., 2012; Brunetti et al., 2010). 

Additionally, most of the proposed thresholds perform reasonably well in the 

region where they were developed, but cannot be exported to other areas, and 

their temporal accuracy remains largely untested (Crozier, 1996; Guzzetti et 

al., 2005).  

Furthermore, empirical models frequently do not discriminate different 

landslide types. The choice of the right parameters for defining thresholds 

depends primarily on the landslide typology. There is a general agreement in 

recognizing that debris flows and shallow landslides are preferentially 

triggered by short and intense rainfalls (Campbell, 1974; Crosta, 1998), while 

deep-seated landslides are more commonly connected with prolonged and 

less intense rainfall events (Bonnard and Noverraz, 2001). In those areas 

affected by both shallow and deep-seated landslides, it is essential to define a 

methodology which could be flexible enough to encompass both of them 

(Martelloni et al., 2011). 

Finally, the empirical threshold approach assumes the immutable state of both 

the trigger and the reacting system (Glade, 2012). Instead, we are living in a 

complex system defined by non-linearity, chaotic behavior, natural and 

human interference that modifies the triggering effects and the slope 

responses. However, empirical models with their limitations still represent 

challenging and valid methods to estimate landslide occurrence and support 

a landslide warning system. 
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2.2 Physical models 
 

Beside statistical methods, deterministic models have been also widely used 

since the 1990s (Cervi et al., 2010; Montgomery and Dietrich, 1994; Wilcock 

et al., 2003), due to the increasing requirement of both spatial and temporal 

forecasting of landslides occurrence. 

Physical rainfall threshold models generally aim to simulate the physical 

phenomena related to the water movement that proceed in the ground, as a 

result of meteorological inputs (Picarelli and Vinale, 2007). In fact, 

mechanical, hydraulic and physical properties of soils (Cancelli and Nova, 

1985; Pierson, 1983; Wilson and Wieczorek, 1995), slope morphometry 

(Crosta, 1998), soil thickness (Corominas 2001), vegetation cover (Buchanan 

and Savigny, 1990), seepage conditions (Iverson and Major, 1986), 

antecedent soil moisture (Campbell, 1975), and bioactivity (Tao and Barros, 

2014) are specific to the local geographic site and may lead to unstable 

conditions in response to rain. Additionally, rainfall regimes are typical and 

distinctive of a specific region. Physical models provide, therefore, the 

possibility of putting in relation the regional precipitation with the site-

specific groundwater system, allowing to evaluate the role of these processes 

in the stability conditions (Baum et al., 2010; Crosta and Frattini, 2003; 

Montgomery and Dietrich, 1994; Picarelli and Vinale, 2007). To achieve this, 

physical models usually combine spatially variable geotechnical and 

geomorphological features (e.g., slope gradient, soil depth, and soil 

properties) with simplified hydrological models (Berti et al., 2012; Gabet et 

al., 2004; Terlien, 1998; Wilson and Wieczorek, 1995). This approach 

requires both time-invariant and time-dependent information (Raia et al., 

2014). The assumed time-invariant information are for instance the 

mechanical, hydrological, and geometrical characteristics of the sliding 

material. The time-dependent information includes for example the 

groundwater flow. Due to lack of complete information and knowledge of the 

physical laws that control landslide initiation, only simplified conceptual 

models are currently available (Raia et al., 2014). 

Finally, because process-based models may determine the location and the 

timing of the forecasted landslides, they can be successfully applied on 

landslide warning systems (Guzzetti et al., 2007).   
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2.2.1 General description of the physical phenomena 

 

The hillslope hydrology is one of the most important issues in landslides 

activation. Water movement, from precipitation to discharge to streams or 

rivers, involves many physical processes such as overland flow, infiltration, 

interception, stem flow, evaporation, through flow, and groundwater flow (Lu 

and Godt, 2013). Rainfall that falls on the ground normally causes short-term 

and long-term responses. Short-term response begins at the surface of the soil, 

due to infiltration and runoff, and propagates downwards, leading the rise of 

water table and pore pressure (or pressure head) in the saturated zone (Baum 

et al., 2010). Long-term response affects the initial depth of the water table 

and the flow direction (Baum et al., 2010). The complexity of these processes, 

does not facilitate the modeling of slope instability (Sidle and Ochiai, 2006), 

even in idealized, smooth, homogeneous hillsides (Freeze, 1971). In fact, 

three‐dimensional topographic forms, surface roughness, interactions of 

surface and subsurface water, and various kinds of heterogeneity (e.g. textural 

variations, stratifications, structural discontinuities, root holes, contrast in soil 

or rock properties) all exacerbate the complexity (Baum et al., 2010; Crosta 

and Dal Negro, 2003; Torres et al., 1998; Uchida et al., 2001).  

Particularly, both at matric and hillslope scale, water movement is highly 

dependent on (Ali et al., 2014; Anderson et al., 1978; Cascini et al., 2006; 

EU-FP7, 2012; Feddes et al., 1976; Greco et al., 2013; Montgomery et al., 

1997; Muzylo et al., 2009; Sidle et al., 2000; Sidle and Ochiai, 2006; Simoni 

et al., 2004): 

a) climatic conditions, such as the rainfall characteristics (duration, 

intensity and pattern); 

b) soil hydraulic and mechanical properties, such as thickness, 

permeability, conductivity, moisture content, porosity, presence of 

large macropores created by subsurface erosion, presence of 

preferential flow network, fractures and interstices, bedrock 

morphology, soil-bedrock interface, soil-water retention curve, initial 

conditions (suction), and boundary conditions; 

c) vegetation cover, such as root water uptake and canopy interception.  

These environmental variables (preparatory factors) affect the timing of the 

generation of surface runoff, the amount of water that infiltrates into the 

ground and the time to achieve the instability conditions (Della Sala and 

Cuomo, 2013; Reichenbach et al., 1998). 
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In fact, rainfall is not the primary cause of slope failures; it is the triggering 

agent (Simoni et al., 2004). Landslides are caused by the buildup of pore 

water pressure (triggering factor) into the ground (Campbell, 1975; Terzaghi, 

1943; Wilson, 1989). Positive pore-water pressures, produced by percolating 

rainfall or by accumulation of water at a certain depth due to changes in 

permeability, decrease the shear strength (i.e. apparent cohesion) or increase 

the shear stress (i.e. driving forces) of the potential failure surface (Chen and 

Zhang, 2014; Terlien, 1998). Negative pore-water pressures in the 

unsaturated zone above the water table contribute towards its shear strength 

and thus help to maintain stability (Fredlund and Rahardjo, 1993). 

 

The mechanisms transforming the rainfall regime into pore water pressure 

fluctuations are various and, sometimes, extremely complex to describe in 

actual slopes (Cascini et al., 2010; Dhakal and Sullivan, 2014). However, two 

hydrologic processes mainly control changes in pore pressure that may lead 

to failure: infiltration of water from the surface (saturation from above) and 

accretion of groundwater table levels (saturation from below) (EU-FP7, 2012; 

Terlien, 1998). 

Infiltration is the portion of precipitation falling on the ground surface, that 

moves into surficial materials towards the stream (through flow) or the 

groundwater flow (Lu and Godt, 2013). Infiltration can occur because of 

rainfall, snowmelt, irrigation, or leakage from aqueducts. The infiltration of 

rainwater causes loss of suction (i.e. reduction in negative pore water 

pressure), during propagation of the wetting front, and rise of the groundwater 

table (i.e. generation of a positive pore water pressure), thus increasing pore 

water pressure with destabilizing effects (Ali et al., 2014; Collins and 

Znidarcic, 2004; Zhang et al., 2011).  

Groundwater table response to rainfall is extremely variable and strictly 

connected to the before-mentioned preparatory factors (Cascini et al., 2010). 

Generally, when the saturated hydraulic conductivity is constant, a loss of 

suction causes a shallow failure while a rise in the water table causes a deep 

failure (Ali et al., 2014; Terlien, 1998). When the hydrological and 

geotechnical soil properties change vertically, the location of the potential 

failure surfaces can be determined by detailed analysis of the slopes or by 

monitoring pore-water pressure fluctuations on the potentially unstable slopes 

(Terlien, 1998).  

 

Pore water pressure monitoring is fundamental to develop reliable models of 

hydrological processes responsible for rainfall-triggered landslides (Berti and 

Simoni, 2010). The pore pressure at the water table is zero by definition. 
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Above the water table, water flows up vertically in the overlying layer based 

on the water capillary-retention properties of the soil. Here, a tension-

saturated zone extends where the pressure head is negative but the water 

content remains constant and saturated. This zone is called “capillary fringe” 

(Gillham, 1984). The height of the capillary fringe is equivalent to the air-

entry value of the soil, which is the negative water pressure at which the 

largest soil pores begin to drain (Brooks and Corey, 1964; Godt and 

McKenna, 2008). The distributions of volumetric water content and pressure 

head above the water table are described by the soil-water characteristic curve 

(SWCC) (Godt and McKenna, 2008). 

The pore pressure response to infiltration at depth is a transient process 

controlled by the hydraulic properties of the hillslope, the initial moisture 

content, and the rainfall characteristics (Godt et al., 2006a; Iverson, 2000; 

Savage et al., 2004). Freeze and Cherry (1979) showed observations of 

vertically downward infiltration above the water table, immediately after 

rainfall events, with an advance rate of the wetting front depending on 

antecedent wetness. An example in Washington state (Baum et al., 2005) 

shows that the response of initially dry soil is slow, whereas the increase of 

soil moisture results in much more rapid response. In both the cases, the 

response lag time increased with depth which is consistent with vertical flow 

assumption; significant lateral flow would tend to equalize response times or 

produce rapid responses at depth (Baum et al., 2010). Perched water and 

lateral flow commonly grow beneath the mantle where the permeability 

contrasts impede the downward percolation and lead to the rise of transient 

perched water tables and the downslope saturated flow of water over the 

impeding layer (Baum et al., 2010; Dhakal and Sullivan, 2014; Montgomery 

et al., 1997). 

    

In literature, there are different hydrological models proposed for the 

estimation of the infiltration rates, which broadly can be divided in two main 

groups: a) empirical models, and b) physically based models (Cuomo and 

Della Sala, 2013). Among the empirical models, a commonly accepted one is 

the Curve Number (CN) method (USSCS - U.S. Soil Conservation Service, 

1964) which is based on a simple mass balance equation between the runoff, 

the cumulative rainfall, the infiltration, and the maximum soil moisture 

retention. Among the physically based models, the most applied are the 

Green-Ampt models and the Richards equation models. The Green-Ampt 

method (Green and Ampt, 1911), based on the Darcy's law (1856), is a one-

dimensional vertical infiltration process applied into an initially dry 

homogeneous soil with a uniform initial water content. The model assumes 
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the presence of a continuous thin flux of water at the ground surface, causing 

a downward moving wetting front. The Richards equation method (Richards, 

1931), describes an unsteady, variably saturated, percolating flow in response 

to rainfall, allowing the hydraulic conductivity to vary with water content. 

Several analytical solutions (e.g. Srivastava and Yeh 1991; Iverson 2000; 

Chien-Yuan et al. 2005) and approximate solutions (e.g. Cho 2009) to the 

Richards equation have been proposed in literature. Both classes of approach 

have significant limits, due to different generalizations that prevent a proper 

simulation of rainfall infiltration. For example, the CN method does not 

consider the hydraulic properties; the Green-Ampt method does not reflect 

the slope angle effect; and the Richards equation method requires the 

distribution of hydraulic conductivity and pressure head, which are not easy 

to measure. 

 

To determine the critical pore water pressures, literature studies refer to the 

slope stability analysis. The hillslope stability is generally analyzed using the 

concept of “limit equilibrium”, which allows to evaluate the conditions of 

equilibrium of a rigid-plastic body, whose soil mass tends to slide down an 

assigned area (of arbitrarily shape and choice) under the influence of gravity 

(Picarelli and Vinale, 2007). The limit equilibrium defines the limiting state 

of mechanical equilibrium between the shear stress and the shear strength of 

the slope material (Lu and Godt, 2013).  

The stability is assessed through the introduction of a factor of safety (FS), 

defined as the ratio between the resisting and the driving forces acting on a 

point along the potential failure plane (equation (10)):  

 

𝐹𝑆 =
𝑅𝑒𝑠𝑖𝑠𝑡𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒𝑠

𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒𝑠
        (10) 

 

The resisting force is the Coulomb shear strength of the soils, a combination 

of gravity, pore pressure and material properties. Thus, the knowledge of the 

groundwater regime is of fundamental importance in the analysis of slope 

stability (Cascini et al., 2006). The shear strength of the soil is given by the 

Mohr-Coulomb failure criterion (Skempton and DeLory, 1957). The driving 

force is the shear stress, i.e. the slope parallel component of gravity. 

When the shear strength is grater then the shear stress (FS>1), the slope is 

predicted stable. When the shear stress is grater then the shear strength (FS<1), 

the slope is predicted unstable. FS =1 is a state of equilibrium, but inherently 

unstable. 
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The local factor of safety is a value of a small part of the potential failure 

surface; the overall factor of safety is an average value taken over the entire 

potential failure surface (Baum, 1995). 

When the failure surface is flat and parallel to the ground, the stability of the 

slope is analyzed through the simple 1-D limit equilibrium model called 

infinite-slope stability model (Taylor, 1948), whose stress conditions are 

repeated identically along any vertical (Picarelli and Vinale, 2007). It assumes 

that (a) each infinitely long slice of slope receives the same amount and 

intensity of rainfall, (b) the time required for infiltration normal to the slope 

is much less than for flow parallel to the slope (Collins and Znidarcic, 2004), 

(c) the wetting front propagates in a direction normal to the slope (White and 

Singham, 2012), and (d) the depth of failure is small compared to the length 

of the landslide mass (Ali et al., 2014). The infinite-slope stability model is 

frequently used to compute FS under dry, saturated and variably saturated 

conditions. An alternative example of analytical solution for calculating FS 

for failure surface geometries other than planar is the ordinary method of 

slices, in which the slope is divided into a number of slices separated by 

vertical boundaries. FS is so computed for the nth slice by summarizing the 

effect of the single shear strength and stress. A commonly used technique has 

developed by Bishop (1955), which improved the method of slices 

considering the inter-slice forces.  

 

 

2.2.2 Effects of rainfall in different soils 

 

Different behaviors can be expected in different geologic conditions. As 

described before, rainfall causes the buildup of pore water pressure into the 

ground and, consequently, the reduction of the effective strength (Campbell, 

1975; Terzaghi, 1943). This mechanism is highly influenced by topographic 

and soil characteristics of the site (Cannon and Ellen, 1985). 

 

Although nearly saturated conditions are often needed to reach the instability 

(Sidle and Swanston, 1982), landslides have been observed to occur in wholly 

or partly unsaturated conditions (Iverson, 1997; Lu and Godt, 2013; Rubin 

and Steinhardt, 1963). In unsaturated conditions, the contribution of capillary 

forces to the effective strength is of fundamental importance and depends on 

soil properties (especially the hydraulic conductivity), degree of saturation, 

matric suction and fluid interface properties (Ali et al., 2014; Bishop, 1959; 

Collins and Znidarcic, 2004; EU-FP7, 2012; Lee et al., 2014; Mitchell, 1976; 
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Torres et al., 1998). Unsaturated conditions are typical of steep and thin soils 

because the capillary forces allow the soil to remain stable at angles steeper 

than the friction angle (EU-FP7, 2012). 

Since the 1970s, many hydraulic studies started to focus the attention on 

monitoring the pore pressure both in saturated and unsaturated soils. As 

example, Weymann (1973) indicated that saturated through flow can only 

develop within a surficial horizon with breaks in the vertical permeability 

which impede further vertical movement. Harr (1977), similarly, observed 

occasional saturation at soil-subsoil interface where the saturated hydraulic 

conductivity decrease of two order of magnitude, due to changes in pore-size 

distribution. Iverson and Mayor (1987), proved that the surficial groundwater 

flow, in different soil context, is mostly direct downward unregarding the 

degree of saturation. They also demonstrated that the increase in pore pressure 

propagates mainly from the surface through the unsaturated zone, attenuating 

with depth and dependently on the antecedent water content. The importance 

of the unsaturated zone dynamics in pore pressure response was stressed also 

by Torres et al. (1998). They hypothesized that, when the soil is close to 

saturation in the vadose zone (between capillary fringe and land surface), the 

pressure response is very quick, since any pulse of rain can quickly cause 

saturation. 

 

Different types of rainfall can trigger both shallow and deep-seated 

landslides.  

As said, shallow landslides are often triggered by short and high-intensity 

precipitation, whereas deep-seated landslides are triggered by prolonged and 

low-intensity rainfall (Campbell, 1975; Cancelli and Nova, 1985; Corominas, 

2001; Crosta, 1998; Sidle and Swanston, 1982; Von Ruette et al., 2013). The 

subsurface flow and slope instability of shallow soils are controlled by several 

mechanisms such as (EU-FP7, 2012): (i) rapid accretion of pore water 

pressure, due to pulses of rainfall, infiltration and development of a wetting 

front in the unsaturated zone (Della Sala and Cuomo, 2013; Reid et al., 1997; 

Zimmermann et al., 1966); (ii) rapid rising of the water table (Matsushi and 

Matsukura, 2007; Wilson and Wieczorek, 1995); (iii) seepage forces (Iverson 

and Major, 1986); (iv) upwelling of pore pressure from fractured bedrock 

under a weathered regolith (Montgomery et al., 1997; Van Asch and Buma, 

1997); (v) soil pipes in headscarps (Jenkins et al., 1988; Pierson, 1983); (vi) 

fluidization at the time of failure (Iverson and Lahusen, 1989). Crosta and 

Frattini (2003) grouped the factors governing the occurrence of shallow 

landslides in two categories: (a) the almost static variables, and (b) the 

dynamic variables. The first, such as soil properties, seepage in the bedrock 
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and topography, define the spatial susceptibility of the slopes. The second, 

such as the degree of saturation, assess the temporal triggering conditions 

along the susceptible slopes. 

On the other hand, deep-seated landslides experience seasonal episodes of 

accelerated movements, due to seasonal rainy periods, rapid snowmelt, and 

regional climate perturbations (Bovis and Jones, 1992). Studies suggested 

that deep-seated landslides are initiated by the loss of negative pore water 

pressure or matric suction (Dahal et al., 2009). In these large complexes, 

complicated hydrogeological patterns can be found. Single or multiple water 

reservoirs can be identified (Malet et al., 2005), whose recharge can be 

supplied by deep circuits beside the infiltration rate (Tacher et al., n.d.). 

Moreover, pore pressure responds to large rainfall input within several days 

at moderate depth and within several weeks to several months at higher depth 

(Baum and Reid, 2000; Coe et al., 2003; Iverson and Major, 1987; Reid, 

1994) 

 

The rise of pressure head into the ground can be produced also by different 

soil textures (Tofani et al., 2006). Fine-grained soils, for example, are widely 

susceptible to rainfall-induced slope failures due to generally low shear 

resistances (Hutchinson, 1988). In fact, the response of the slope material 

relies primarily on ground permeability. The low permeability of fine-grained 

soils (e.g. clay-rich soils) impedes the flow of water thus reducing the soil 

suction and developing the pore pressure (Baum, 1995). These materials are 

normally more sensitive to precipitation with long duration and moderate 

intensity (Casagli et al., 2006), therefore antecedent rainfall have high 

influence. Baum and Reid (1995) documented that surface infiltration 

saturates clay-rich soils in few days, causing rapid pressure pulses, and lags 

behind with depth as rain attenuate, while gradients maintain a strong 

downward component. Matsushi and Matsukura (2007), highlighted that 

clayey soils are likely to maintain nearly-saturated conditions during the wet 

season, favoring the rapid buildup of positive pore pressures. Berti and 

Simoni (2010) measured in a clay cover  relatively fast and transient 

responses to precipitation at 0.1-2.5m of depth, which can be well reproduced 

by a one-dimensional linear diffusion model. 

On the contrary, course-grained soils are susceptible to rainfall-induced slope 

failures during periods of intense rainfall, due to increased pore pressure and 

seepage forces (Dahal et al., 2009). In these cases antecedent rainfall has little 

influence on landslide occurrence (Corominas, 2001) 
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2.2.3 Review of the existing models 

 

In literature, two kinds of physically based approaches have been applied to 

explain the relationship between rainfall and slope failures: hydrological 

models and slope stability models (Caris, 1991; Crozier, 1986; Terlien, 1998).  

 

Hydrological models are used to analyze the interaction between rainfall and 

soils (i.e. infiltration process, changes in the groundwater table and variations 

of the physical properties) and to obtain pore water pressure profiles for 

assessing the rainfall amounts that are required to build up critical pressure 

heads (Segoni et al., 2009). Various hydrological models have been proposed 

to:  

(i) predict the accumulation of the infiltrated water into the ground 

(Collins and Znidarcic, 2004; Green and Ampt, 1911; Iverson, 

2000; Iverson and Major, 1986; Montgomery and Dietrich, 1994; 

Wilson, 1989; Wu and Sidle, 1995); 

(ii) calculate the soil moisture to assess the effect of antecedent 

rainfall (Crozier and Eyles, 1980; Crozier, 1999; Glade et al., 

2000; Godt et al., 2006a; O’Loughlin, 1986; Ponziani et al., 2012; 

Rianna et al., 2014; USSCS - U.S. Soil Conservation Service, 

1964); 

(iii) monitor the groundwater and model seasonal water table changes 

(Baum and Reid, 1995; Haneberg, 1991; Hodge and Freeze, 1977; 

Iverson and Major, 1987); 

(iv) estimate the temporal and spatial distribution of groundwater 

recharge (Dripps and Bradbury, 2007); 

(v) reproduce the soil suction and water content fluctuations (Greco 

et al., 2013). 

 

Slope stability models are used to determine critical pore water pressures with 

the aim to compute the slope factor of safety (FS) (Chen and Zhang, 2014). 

These models extend spatially the simplified stability methods widely 

adopted in geotechnical engineering (Taylor, 1948; Wu and Sidle, 1995).  

Many different techniques and methods have been developed in recent years 

for slope stability analysis. The infinite-slope stability model is one of the 

most commonly used, due to its simplicity (Ali et al., 2014; Baum et al., 2002; 

Collins and Znidarcic, 2004; J.W. Godt et al., 2008; Iverson, 2000; 

Montgomery and Dietrich, 1994; Raia et al., 2014; Salciarini et al., 2006; 

Savage et al., 2003; Wu and Sidle, 1995). However, Li et al. (2013) 
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demonstrated that besides the approximations it still maintain validity as a 

simplified framework to assess failures due to the infiltration of rainfall. Some 

application of the infinite-slope model are the Level I Stability Analysis 

(LISA) model (Hammond et al., 1992) that uses Monte Carlo simulation of 

the infinite-slope equation to estimate a probability of slope failure in relative 

stability assessment of natural slopes, and the PROBability of STABility 

(PROBSTAB) model (Van Beek and Van Asch, 2004) that compute the 

probability of failure for the entire soil column.  

 

Much research has been done to combine hydrological and slope stability 

models to explain the relationship between rainfall and slope failures (Armaş 

et al., 2014; Baum et al., 2002; Borga et al., 1998; Casagli et al., 2006; Crosta 

and Frattini, 2003; Dahal et al., 2009; Montgomery and Dietrich, 1994; Raia 

et al., 2014; Salciarini et al., 2013; Terlien, 1998; Tofani et al., 2006; Torres 

et al., 1998; Wu and Sidle, 1995). Numerous techniques have been developed 

and implemented in GISs to evaluate the effects of topographic convergences 

and drainage areas on slope failures (D’Amato Avanzi et al., 2009). These 

physical methods generally rely on the application of one-, two- or three-

dimensional hydrological models coupled with, usually, an infinite-slope 

safety factor equation by means of analytical, numerical, and hybrids 

mathematical tools (J.W. Godt et al., 2008).  

The most adopted combinations are between the infinite-slope stability 

analysis and (Baum et al., 2010): 

a) a steady‐state shallow subsurface flow model (Montgomery and 

Dietrich, 1994; Pack et al., 1998); 

b) a time‐dependent or quasi time‐dependent shallow groundwater flow 

model (Van Beek and Van Asch, 2004; Wu and Sidle, 1995); 

c) a transient infiltration model (Baum et al., 2002; Crosta and Frattini, 

2003; Iverson, 2000; Salciarini et al., 2006; Savage et al., 2004, 2003);  

d) a distributed model of vertical suction and moisture (Rigon et al., 

2006; Simoni et al., 2008); 

e) a fully three‐dimensional solution to the Richards equation (Mirus et 

al., 2007); 

f) a one dimensional numerical solution for unsaturated and variably 

saturated flow (Godt and McKenna, 2008; Mercogliano et al., 2013) 

A large number of coupled physical models have been proposed in literature. 

Here, the most common are presented. 

 

One of the first successful examples of coupled models was the TOPography 

based hydrological MODEL  (TOPMODEL) suggested by Beven and Kirkby 
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(1979). They introduced a topography index to analyze the influence of 

topography on the behavior of saturated slope materials. The index was then 

incorporated in a hydrological model that simulate the runoff in a spatial 

context. 

 

Shortly after, the HYSteretic Water and SOlut transport in the Root zone 

(HYSWASOR) simulation model (Van Genuchten, 1980) was developed. It 

is a finite difference 1-D isothermal hydrological model for transport of water 

in saturated conditions, combined with a slope stability model using Bishop’s 

method of analysis. This type of model evolved in numerous later examples 

such as the Combined Hydrology And Slope stability Model (CHASM) 

(Anderson and Lloyd, 1991) produced by Bristol University, the 2D Hillflow 

(Bronstert, 1994), and the GwFluct v 2.0 (Terlien, 1996). 

 

Among the most diffused physical models there is the SHALlow slope 

STABility model (SHALSTAB) proposed by Montgomery and Dietrich 

(1994). It is based on a geometrically confined infinite slope model of the 

Mohr–Coulomb failure criterion coupled with a simplified steady state 

hydrologic model (O’Loughlin, 1981) based on Darcy’s law. The main 

assumptions of this combined model are (D’Amato Avanzi et al., 2009): (i) 

infinite slope; (ii) parallel failure plane, water table and ground surface; (iii) 

failure plane at the colluvium-bedrock boundary; (iv) steady state shallow 

subsurface flow; (v) absence of deep drainage and flow in the bedrock. At 

each point of the slope SHALSTAB estimates the pressure head buildup, 

above an impermeable layer, assuming a constant infiltration rate which also 

includes the entire part of precipitation that has infiltrated atop (Picarelli and 

Vinale, 2007). Moreover, this model considers some material properties as 

input and can be used in the spatial assessment with GIS (Dahal et al., 2009; 

Grelle et al., 2013). However, the hydrologic approach suggested by 

Montgomery and Dietrich (1994), neglects moisture content above the water 

table and does not account for transient response to rainfall. 

 

In 1995, Wu and Sidle, developed a Distributed SLope stability Model 

(dSLAM) for steep forested basins, long timescales and landscape 

management. They based the approach on a kinematic wave groundwater 

model, including vegetation impacts in terms of root strength and vegetation 

surcharge, and an infinite slope model. The method was intended to analyze 

rapid, shallow landslides and the spatial distribution of FS in both temporal 

and spatial dimensions. 
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Pack et al. (1998), developed another model, the Stability INdex MAPping 

(SINMAP) which can be applied for slopes that have a shallow soil depth and 

impermeable underlying bedrock. SINMAP is similar to SHALSTAB and 

dSLAM, because they are all based on a geometrically confined infinite slope 

model that takes into account the dynamic regime of the pore pressures and 

they can be implemented in a GIS framework. These steady models are very 

useful for a preliminary stability assessment over areas particularly large, but 

have the limitation of ignoring the effect of the transient phenomena due to 

infiltration (Iverson, 2000). However, SINMAP is the more advanced because 

uses cohesion and root cohesion (Dahal et al., 2009). 

 

Montrasio (2000) worked on a simplified model for the forecast of soil slip 

(Shallow Landslides Instability Prediction - SLIP), which has been widely 

applied at a local scale in Italy and implemented for a real-time monitoring at 

a regional scale (Quintavalla et al., 2009). This model is based on the limit 

equilibrium method applied to an infinite slope and is able to link the factor 

of safety with the seasonal, daily or hourly rainfall trend, taking into account 

the underground water flow. 

 

Iverson (2000), extended the pore pressure distribution model of Reid (1994), 

including an infinite-slope stability model and a prediction of near-surface 

pore-pressure conditions, to assess short-term pore water response to rainfall 

in the hypothesis of vertical infiltration. The model helps to predict timing, 

depth, and acceleration of rainfall-induced landslides (Dahal et al., 2009). He 

used rational approximations of the Richards equation to develop a theoretical 

model that augments steady and quasi-steady models by requiring intensity-

duration and hydraulic diffusivity as input parameters. The simplified model 

framework is valid for varying periods and for different hydrological 

conditions (Crosta and Frattini, 2003). Nonetheless, it cannot predict all 

complexities observed in the field (Iverson, 2000), but only under a restrictive 

and unrealistic set of conditions (i.e. very low intensity and long duration 

rainfall, small depth of the failure surface compared to the sliding mass, 

anisotropic saturated hydraulic conductivity) (Jonathan W Godt et al., 2008). 

 

A large part of the literature is based on the U.S. Geological Survey’s 

Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability 

(TRIGRS) model (Baum et al., 2008, 2002, 2010), which simulates the pore 

pressure response to rainfall infiltration. TRIGRS uses a distributed approach 

to model transient vertical groundwater flow over a digital landscape 

combined with an infinite slope-stability calculation after Iverson (2000). The 
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model assumes a two-layer system that consists of an unsaturated zone above 

a saturated zone. The timing needed to reach potential instability in the 

unsaturated zone depends on the soil-water characteristics of the hillslope 

material (Godt et al., 2012). Both input variables and rainfall rate may vary 

in space and time. TRIGRS utilizes an approximate analytical solutions of the 

Richards equation for saturated (Iverson, 2000; Savage et al., 2003) and 

variably saturated conditions (Savage et al., 2004; Srivastava and Yeh, 1991) 

to determine a one-dimensional solution for pore pressure diffusion in a soil 

layer of finite depth and its spatial and temporal oscillations. The difference 

between TRIGRS and SHALSTAB is that the first uses analytical solutions 

of the infiltration both transient and stationary (Picarelli and Vinale, 2007). 

The variation of pore pressure following a rainfall event is a non-stationary 

process; it depends on the rainfall intensity and duration, and on the hydraulic 

characteristics of the soil. A proper simulation of the phenomenon requires 

therefore the stability analysis to be coupled with a transitional infiltration 

model. The transient solution for pore pressure response, considered in 

TRIGRS, can be applied on any steady state groundwater flow that is 

consistent with model assumption (Jonathan W Godt et al., 2008). Input data 

for the model include time-varying rainfall, topographic slope, colluvial 

thickness, initial water table depth, and material strength and hydraulic 

properties. Finally, TRIGRS computes factor of safety at any time during a 

rainstorm and is implemented in a GIS framework. Key limitations of the 

model are: (a) the assumption that near-surface soils are saturated or nearly 

saturated, (b) the assumption that soils are homogeneous and isotropic, and 

(c) the inability of the model to simulate flood response, which would require 

distributed routing capability (Tao and Barros, 2014).  

TRIGRS has been widely applied in the international literature. For example, 

Keim and Skaugset (2003) used the model to characterize the effects of forest 

canopies on slope stability in the northeastern United States. Salciarini et al. 

(2006) analyzed susceptibility to shallow landslides in an area in the eastern 

Umbria (central Italy). Tan et al. (2008) adopted TRIGRS for shallow 

landslides in Taiwan with the support of GIS, GPS, and Remote Sensing 

framework (3S). Godt et al. (2008a) tested the model in an area of Seattle, 

Washington, and showed that is effective for shallow landslide hazard maps. 

Vieira et al. (2010) used TRIGRS in Brasil, introducing two indexes for back 

analysis: Scars Concentration index (i.e. the ratio between the number of 

output cells with scars and the total number of cells with scars within the 

catchment), and Landslide Potential index (i.e. the ratio between the number 

of cells with scars, in each defined class, and the total number of cells in that 

same class). Grelle et al. (2013) performed the analysis in southern Italy 
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introducing an initial water table depth estimation model, a probabilistic 

analysis of rainfall, and some new indexes for back analysis validation. Raia 

et al. (2014), proposed a new probabilistic code of the model (TRIGRS-P) to 

overcome the problem of poor knowledge of terrain characteristics over large 

study areas.  

 

Another example of a coupled hydrological-slope stability model is the Geo-

Slope package (Geo-Slope, 2003a, 2003b). SEEP/W (Geo-Slope, 2003a) 

adopts an implicit numerical solution of Darcy’s equation, for saturated and 

unsaturated flow conditions, to analyze the seepage and describe the pore-

water pressure variations within porous materials over space and time. 

SLOPE/W (Geo-Slope, 2003b) performs the slope stability analysis adopting 

the limit equilibrium method and a variety of methods (e.g., a simplified 

Bishop’s method, the Spencer method, a generalized limit equilibrium 

method) to solve the computational problems for the factor of safety. Coupled 

SEEP/W–SLOPE/W analyses have been adopted successively to evaluate the 

dynamic conditions of both the stability of riverbanks and slopes (Aleotti, 

2004; Casagli et al., 2006; Collins and Znidarcic, 2004; Crosta and Dal Negro, 

2003; Dahal et al., 2009; Rinaldi et al., 2004). Dahal et al. (2009) have applied 

an example of the SEEP/W–SLOPE/W analyses in Nepal, for the rainfall-

triggered landslides that occurred during an extreme monsoon rainfall event 

on 23 July 2002, to understand the relationship of pore pressure variations in 

soil layers and to determine the spatial variation of landslide occurrence. 

Tofani et al. (2006) performed the SEEP/W-SLOPE/W analyses to 

investigate the instability mechanisms behind rainfall-triggered landslides 

that occurred during the storm of 20–21 November 2000 in Tuscany (Italy). 

 

Numerous coupled models have attempted to include stochastic uncertainty 

analysis to account for heterogeneity and errors in specified soil properties 

(e.g., thickness, cohesion, friction angle) (Tao and Barros, 2014). For 

example, the distributed hydrological model with coupled water and energy 

budgets (GEOtop) (Rigon et al., 2006) was combined with an infinite-slope 

geotechnical model (GEOtop-FS) (Simoni et al., 2008) to simulate the 

probability of shallow landslide occurrence for saturated conditions. GEOtop-

FS computes soil moisture and matric suction within individual soil layers by 

a numerical solution of the Richards equation in a 3-D scheme (Papa et al., 

2013; Von Ruette et al., 2013). This model uses Gaussian distributions to 

describe the range of independent parameters and linear uncertainty analysis 

to estimate their combined effect on the factor of safety (Tao and Barros, 

2014). 
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Mirus et al. (2007) estimated slope stability using a fully three‐dimensional 

numerical solution to the Richards equation combined with the infinite‐slope 

equation. They demonstrated that, without taking into account convergent 

subsurface flow, pore water pressures, and thus slope stability, are 

underestimated. 

 

Lehmann and Or (2012) proposed a Landslide Hydromechanical Triggering 

(LHT) model, successively extended in Catchment-scale Hydromechanical 

Landslide Triggering (CHLT) model  (Von Ruette et al., 2013). The CHLT 

model enables evaluation of the effects of soil type, mechanical reinforcement 

(soil cohesion and lateral root strength), and initial soil water content on 

landslide characteristics. The simplified model statistically predicts localized 

landslide patterns, volumes release, and wide landslide size frequency 

distributions. 

 

Lanni et al. (2012) produced a simplified physical model named Connectivity 

Index-based Shallow LAndslide Model (CI-SLAM) for shallow landslide 

forecasting. In this method, a dynamic topographic index-based hydrological 

model is combined with an infinite slope stability model to describe the 

transient lateral flow. Such flow, initiates only if rainfall exceeds a threshold 

value determining hydrological connectivity. 

 

Finally, Rossi et al. (2013), developed the HIgh REsolution Slope Stability 

simulator (HIRESS) that integrates a hydrological and a geotechnical model 

to provide the probability of slope failure, given an uniform Monte Carlo 

probability distribution for input parameters. The HIRESSS code is used for 

analyzing shallow landslide triggering in real time, on large areas, using 

parallel computational techniques. The hydrological model is based on an 

analytical solution of an approximated form of Richards’s equation under the 

wet condition hypothesis. The geotechnical model is based on an infinite 

slope model and it takes into account the increase in strength and cohesion 

due to matric suction in unsaturated soils and the soil mass variation on 

partially saturated soil due to infiltration. 
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2.2.4 Advantages and limitations of the physical models 

 

The main advantage of the physical models is that they can predict the slope 

failure accurately considering site specific conditions (Chen and Zhang, 

2014). Being process-driven, they gain the benefit of considering the 

geotechnical parameters that characterize the material involved and the 

dynamic factors which affect the phenomenon (rainfall and soil 

characteristics) (D’Amato Avanzi et al., 2009). Thus, for both small and 

widespread areas with non-homogeneous soils, these models are particularly 

appropriate. Moreover, when a large data set on historical landslides and 

rainfall patterns is limited, the hydrogeological processes need to be studied 

in detail to describe the mechanisms that are responsible for rainfall-induced 

landslide (Terlien, 1998). In this case, the application of a deterministic 

approach is desirable to find critical rainfall amounts (Wilson and Wieczorek, 

1995). Specifically, some models seems to be particularly valuable to take 

into account the heterogeneity of the land in a distributed manner and with a 

high level of detail (e.g. TRIGRS). Others, provides an optimal spatial 

distribution of critical rainfall (e.g. SHALSTAB). Finally, other models show 

to be suitable tools for stability analysis in nearly real time and for large scales 

(e.g. SLIP). 

 

However, various limitations exist. The main constraint is that physically 

based models require and depend on detailed spatial information on the 

physical, mechanical, geotechnical, hydrological, lithological, and 

morphological properties that control the initiation of landslides (Berti et al., 

2012; Guzzetti et al., 2007; Segoni et al., 2009). This information is difficult 

to collect precisely over large areas due to the high spatial variability (Cervi 

et al., 2010; Terlien, 1998), and is rarely available outside specifically 

equipped and onerous field investigations (Chen and Zhang, 2014). For this 

reason, they are more commonly applied at the slope or catchment scale 

(Baum et al., 2002; EU-FP7, 2012; Mercogliano et al., 2013; Segoni et al., 

2009). Moreover, the calibration of physical models needs site-specific 

precipitation measurements and exact location and timing of slope failures, 

but such data are not usually available (Guzzetti et al., 2007). Another 

limitation for the application of these methods over large areas is the need for 

a relevant computational time which is not compatible with real-time 

applications (Rossi et al., 2013). Additionally, these models that compute FS 

cell by cell, usually overestimate the potential instabilities because a single 

instable element do not slide if it is surrounded by stable elements (Papa et 
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al., 2013). Furthermore, assumptions of these models are too restrictive, e.g. 

the pore water pressure responses very rapidly to transient rainfall and the 

pressure redistribution includes a large component normal to slope. Finally, 

the best performance of physically based models is achieved when attempting 

to predict shallow landslides (soil slides and debris flows), rather than 

predicting deep-seated landslides (Guzzetti et al., 2007). In fact, the 

characteristics of shallow landslides (e.g., modest thickness of terrain 

involved, almost planar sliding surface, water table almost parallel to the 

sliding surface) are often compatible with assumptions used by these models 

(Picarelli and Vinale, 2007). 
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3 Research framework 

 

3.1 Research objective, hypotheses and questions 
 

Rainfall induced shallow landslide forecasting is an issue of remarkable 

importance worldwide, which has been broadly deepened during the last 

decades. Much of the research have focused on the application of either 

empirical or physical models at various scales. The choice of the method and 

the scale is mostly determined by the availability of data and the purpose of 

the study.  

Empirical models are commonly used at regional and global scale when 

historical rainfall and landslides inventories are available. On the other hand, 

physical models are generally applied at local and slope scale because they 

requires nearly real time hydrological and geotechnical data. 

Landslide monitoring and forecasting in the Marche region, are carried out by 

the Civil Protection “Regional Functional Center” (CFR), in order to setting 

up the warning system and support the contingent emergency management 

activities. For this purpose, site-specific and calibrated rainfall thresholds are 

required. However, these agencies are responsible for large territories (e.g. 

hundreds or even thousands of square kilometers) and so they cannot usually 

rely on physically based models because of the difficulty of defining the exact 

spatial and temporal variation of the many involved factors. Conversely, 

empirical models, ignoring the physical processes, may oversimplify the real 

conditions of the territory and the correlation between the primarily cause 

(rainfall) and the effect (landslide). 

 

The primary objective of this study is determining the potential landslide 

rainfall thresholds that could be useful as a decision tool for the Marche CFR. 

In order to achieve this, the research intended to apply different predictive 

models to enhance landslide forecasting in the Marche Region. 

 

The entire research revolves around the hypothesis that the synergic use of 

empirical and physical approaches improves the ability to analyze the 

correlation involving landslides and rainfall. Particularly, the study 

investigates the possibility of merging empirical and physical methodologies 

to enhance the prediction of shallow landslides in a specific area of the 

Marche region. It is hypothesized that the use of different methods of analysis 

on a same area of study and the comparison between the results obtained can: 
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i) enhance the quality and reliability of each model, ii) identify the main 

triggering factors of the phenomena analyzed and neglect the less important, 

and iii) choose the most appropriate methodology for the forecasting activity 

in the study area. 

The study area selected for this research is borderline-scale and therefore 

challenging for both the techniques: it is smaller than the area usually selected 

for the application of empirical models and bigger than areas selected for 

physically based studies. The reason of this choice is for reaching a 

compromise of the two models to allow a comparison and to take advantage 

of the benefits of both the approaches.  

 

The process of hypothesis testing has been guided by several research 

questions.  

 

First, is the correlation between rainfall and landslide initiation positive in the 

study area? This is the primary question to answer and the basis of the entire 

research. Indeed, is necessary to demonstrate that rainfall is one of the key 

triggering factor of shallow landslides within the selected field. 

 

Second, how geologic factors can be considered as input in empirical rainfall 

thresholds models? Additionally, what are the most effective rainfall 

parameters (e.g. intensity, duration, cumulative rainfall, antecedent 

moisture…) for the definition of rainfall triggering thresholds within the study 

area? Moreover, are the trends of these parameters in agreement with the 

hydrogeological characteristics of the terrain? The assumption is that such 

methods can be calibrated, at the beginning of the analysis, using local 

hydrogeological properties, which should influence the modeled rainfall 

thresholds. 

 

Third, how statistical analysis can be applied as input of a deterministic 

model? Furthermore, is it possible to use the physical TRIGRS model over a 

broad area, even where geotechnical and hydraulic properties data as well as 

temporal changes in topography or subsurface conditions are not available? 

Here, the postulation is that, when a detailed monitoring of physical 

properties is not feasible, a statistical approach may help in assessing the 

process-based model. 

 

Finally, after a validation test, which is the best methodology for the study 

area? The hypothesis is that the integration of the approaches makes all of 



61 

 

them stronger and valid. In addition, the concurrent application allows to 

overcome the limitations and to benefit of the advantages of both the models. 
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3.2 Study area 
 

This chapter provides morphological, hydrographical, geological, 

lithological, and climatological description of the Marche region. Detailed 

description is given for the study area, which is situated in the eastward 

section of the Esino river basin. 

 

 

3.2.1 Overview of the Marche region 

 

The area selected for this study is located in the Marche region, on the East 

coast of central Italy. 

 

The morphology of the Marche region can be summarized in two parts: the 

mountainous western portion (the Apennines) and the hilly eastern area (the 

Subapennine) that extends towards the Adriatic coast (Figure 4) (Bisci and 

Dramis, 1991). The Region is characterized by (i) a narrow coastal plain, 

which varies in width from a few hundred meters to a few tens of kilometers, 

(ii) preponderance of hills with an average height of 300-400 m, and (iii) a 

mountainous area. In the northern portion of the territory, the Apennine chain 

splits into two ridges: the inland Umbro-Marchean ridge, which is the 

watershed between the Adriatic and the Tyrrhenian tivers, and the eastern 

Marchean ridge, crossed by some of the major rivers (Figure 4). These chains 

unify in the south originating the Sibillini Mountains in which are sited the 

highest heights (Dramis, 1984). 

 

The majority of the springs of the main hydrographic network (i.e. Foglia, 

Metauro, Esino, Potenza, Cienti and Tronto) are in the Umbro-Marchean 

ridge. The initial section of the main rivers, therefore, flows through the 

Apennines and towards the Adriatic Sea with E-NE direction (Figure 4). In 

the mountainous portion, characterized mainly by the action of linear erosion 

carried by rivers, the valleys are narrow and deep (Coltorti and Nanni, 1987). 

In the hilly section, there is a significant change in the morphology of the 

river valleys, which are wider and with gentle slopes. Here, the action of the 

water is less aggressive and erosive due to the lower energy of the relief (Bisci 

and Dramis, 1991). The sea mouth of the rivers is via estuaries that do not 

protrude from the very general outline of the coast. 
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Figure 4 The morphology and hydrography of the Marche region. The figure highlights the E-NE 

direction of the regional rivers 

 

From a geological point of view, the Umbro-Marchean Apennine is the most 

southern and external part of the Northern Apennines. It is the result of a 

complex history of deformation that has affected the entire stratigraphic 

succession of the African continental margin from the opening of the Tethys 

Ocean (Late Triassic) (Principi et al., 2007). The sedimentary succession, 

almost continuous from the Upper Triassic to the Neogene, has variations in 

thickness and facies that reflect the time-space oscillations of the sedimentary 

environments (Centamore and Micarelli, 1991). In the first Triassic stage, the 

deposition of sediments took place in correspondence of a basal carbonate 

platform that in the Jurassic was substituted by a pelagic basin with high 

subsidence (Figure 5). This basin, called the Umbro-Marchean basin, is 

mainly composed of calcareous and siliceous rocks. The next phase consisted 

of a more uniform marine system that was maintained for a long period of 
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about 100 million years from Cretaceous to the end of Paleogene. The pelagic 

formations of Cretaceous and Paleogene of the Umbro-Marchean basin 

consist mostly of calcareous marl, marl and argillaceous marls (Figure 5). 

From the Early Neogene (Miocene), the basin started to be affected by the 

first compressive forces related to the genesis of the Apennines. As a result, 

it assumed the characteristics of a foreland with turbiditic sedimentation 

derived from the continental shelf (Centamore and Micarelli, 1991) (Figure 

5). In this stage, three main morpho-structural units separated by the emerged 

ridges were outlined: (i) the Umbrian basin, (ii) the internal Marchean basin, 

and (iii) the external Marchean basin. Among the Miocene formations, the 

Chalky-Sulfurous is the most widespread. During the Plio-Pleistocene period, 

the gradual eastward migration of the foreland basin led to progressively 

lowering marine conditions (Fiorillo, 2004) (Figure 5). The Plio-Pleistocene 

marine sedimentary succession depicting the Marche region is mainly 

characterized by pelitic and pelitic-arenaceous sediments (Antonini et al., 

2003).  

 

 

Figure 5 Geological map of the Marche region (modified after APAT - Dipartimento Difesa del Suolo 

2007) 
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The continental deposits related to the Quaternary of Umbria-Marche consist 

of alluvial terraces and slope deposits (Principi et al., 2007). Finally, in the 

northern area of the Region emerges the complex of Val Marecchia, which is 

disconnected from the rest of the regional landscape for its specific structural 

characteristics, being a chaotic allochthonous complex slipped from the 

innermost parts of the Apennines (Figure 5). 

 

The lithologies occurring in the Marche region are quite various, even if 

characterized by the exclusive presence of sedimentary rocks. These 

sediments have different physical, mechanical, structural, and disposition 

features, depending on their composition and grain size, which cause a 

different degree of erosion and propensity to failure. The lithotypes have been 

grouped in the following hydrogeological classes (Coltorti and Nanni, 1987) 

(Figure 6): 

a) limestone, characterized by steep and averagely stable slopes typical 

of the Apennines, high reliefs, scarce erosion, falls and topples as 

types of failure, possible karst and freezing phenomena;  

b) marl and calcareous marl, characterized by a percentage of clay that 

facilitates erosion and does not allow the maintenance of steep slopes, 

wider river valleys, low permeability; 

c) sandstone, conglomeratic sandstone and pelitic sandstone, 

characterized by sharp relief and rugged morphology, resistance to 

erosion, good mechanical features but where they form steep slopes 

and in correspondence of the areas affected by tectonic phenomena 

may originate falls or slides, generally low permeability that causes a 

greater amount of water flowing on the surface; 

d) chalk, characterized by materials poorly resistant to erosion and 

particularly soluble making them subject to karst phenomena, low and 

rounded reliefs;  

e) clay and sandy-clay, characterized by hilly morphology and gentle 

slopes, very low permeability and easy erodibility (e.g. badlands), 

high susceptibility to landslides especially slides and flows, freeze-

thaw cycles;  

f) alluvium and colluvium, characterized by loose rocks, resistance to 

erosion and permeability directly proportional to the particle size. 

 



66 

 

 

Figure 6 Lithology of the Marche region, grouped in hydrogeological classes 

 

Climatic factors play a key role in the initiation of landslides, especially in 

climates where long dry seasons alternate with periods of intense and (or) 

prolonged rainfall. The climate characteristics of Marche are affected by the 

Adriatic Sea, which weakly mitigate the cold air mass coming from north and 

east, and by the presence of the Apennine chain, which hampers the mostly 

temperate and humid air masses from west (Bisci and Dramis, 1991). 

Consequently, the Region is characterized by two macroclimates: the 

mediterranean and the temperate.  The mediterranean macroclimate belongs 

only to the coastal strip from the center (Ancona) to the southern boundary 

with Abruzzo region. The temperate macroclimate is distinguished in: (a) 

submediterranean, which includes the hilly portion and so most of the region, 

(b) mesotemperate, which characterize the Apennine ridge, and (c) 

criotemperate, which corresponds to the highest peaks of the Apennines. 

The rainfall pattern (data from 1950 to 1989) can be divided in three 

longitudinal homogeneous zones (Figure 7): (i) a coastal belt with MAP of 

600-850mm, (ii) a central belt with MAP of 850-1100mm, and (iii) a 
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mountain belt with values of MAP over 1100mm. However, the southern part 

of the Region is usually less rainy than the north. 

 

 

Figure 7 Map of the mean annual precipitation of the Marche region during the period 1950-1989 

(Amici and Spina, 2002) 

 

 

3.2.2 The post-orogenic complex of the Esino river basin 

 

Surveys, data collection, and analysis of this research were carried out in the 

eastward section of the Esino river catchment, Marche region. The rational 

for this choice is that the Esino river basin is one of the largest and most 

inhabited (National Institute of Statistics - ISTAT, 2014) of the region. 

Therefore, the exposure to the hazard is higher and it is easier to gather 

information about past landslides. 

 

The river extends for 85 km, from its natural spring located at 576m a.s.l. on 

Mount Cafaggio, near Esanatoglia (Macerata), to its mouth situated near 
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Falconara (Ancona) on the Adriatic coast (Boni and Mastrorillo, 1995) 

(Figure 8). As almost all the major rivers of the Marche region, the Esino have 

the springs in the Umbro-Marchean ridge and flows in E-NE direction toward 

the Adriatic Sea. The river has a medium slope of 1.2%, and its average 

discharge at the mouth is about 18 m³/s, with value ranging from 5 m³/s in the 

summer and 1400 m³/s in the fall (Bisci and Dramis, 1991). The hydrographic 

network in the Esino basin is strongly controlled by the structures and the 

heterogeneous lithology of the Apennines and general morphology of the 

Marche territory (Coltorti and Nanni, 1987).  

 

The catchment area of Esino covers 1223 square kilometers mainly included 

within the administrative boundaries of the province of Ancona, with an 

appreciable portion in the province of Macerata and only minor areas in the 

provinces of Pesaro and Perugia (the latest is in the Umbria region). 

The Esino basin is located within the geological and morphological setting of 

the Umbro-Marchean Apennine, which in the studied basin splits into two 

ridges: the inland Umbro-Marchean ridge and the eastern Marchean ridge. In 

the catchment area, these ridges circumscribe a syncline fold, the core of 

which is constituted by a younger and easily erodible outcropping layer. 

Therefore, the concurrence between tectogenesis and morphogenesis caused 

the stream to cross perpendicularly the anticlines and have in some cases 

segmented trend (Coltorti and Nanni, 1987).  

The geological setting of the Esino basin is a Quaternary sedimentary 

sequence that resulted from compressional tectonic forces started during the 

Neogene (Bisci and Dramis, 1991; Principi et al., 2007).  

Almost exclusively sedimentary rocks, roughly divided into the following 

hydrogeological complexes, characterize the area: (i) carbonatic, (ii) 

terrigenous, and (iii) post-orogenic sediments. Carbonate rocks prevail in the 

basin's westward section, terrigenous sediments dominate the central area, 

and a post-orogenic complex covers the basin's eastward section, from the 

Subapennine hills to the Adriatic coast (Gentili and Dramis, 1997) ( 

Figure 8). Every material determines different levels of slope erosion and 

different mass movement mechanisms (Bisci and Dramis 1991). For example, 

the carbonate complex is principally composed of calcareous rocks 

susceptible to falls and topples. In contrast, the terrigenous and post-orogenic 

complexes of the study area are more susceptible to slides and flows 

(Antonini et al., 2003; Bisci and Dramis, 1991).  
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Figure 8 Hydrogeological map of the Esino river basin 

 

The study area covers about 550km2 and is located in the post-orogenic 

sedimentary complex of the Esino river basin. It contains abundant marine 

post-orogenic sediments of the Pliocene and Pleistocene, also known as blue 

clay deposits (Fiorillo, 2004). These deposits constitute a clastic succession 

formed by grey-blue silty and marly clays, interspersed with fine sands and 

conglomerates of various thickness marking the bedding (Fiorillo, 2004; 

Gentili and Dramis, 1997) (Figure 9). The origin of the post-orogenic slopes 

can be considered as the nearly simultaneous result of the process that caused 

the scarps and the geomorphological modelling, because of the high 

erodibility of the materials. Upon the hillsides, a colluvial yellowish cover, 

produced and removed by weathering and degradation of the substratum, 

defines the slope profiles and, therefore, the slope angles (Fiorillo, 2004). 

 

The hydrogeological characteristics of the area can be considered relatively 

uniform, although distinguishable in 7 main units (Table 3 and Figure 9): 

alluvium, chalk, clay, colluvium, limestone, marl and sandstone. 
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UNIT DESCRIPTION 

Alluvium 
Alluvial plain (recent and ancient) (Holocene – Middle and 

Upper Pleistocene) 

Chalk Chalk, chalky-sandstone and bituminous clay (Messinian) 

Clay 
Clay, clayey-marl and marly-clay (Pleistocene – Pliocene - 

Messinian) 

Colluvium 
Eluvio-colluvial, slope debris, morainic deposits (Holocene – 

Upper Pleistocene) 

Limestone 
White, red and varied sliver (limestone and flint) (Priabonian - 

Cenomanian) 

Marl 
Marl, calcareous marl and argillaceous marls (Miocene – 

Oligocene) 

Sandstone 
Sandstone, arenaceous-conglomeratic, arenaceous-pelitic units 

interposed with clays (Pleistocene – Pliocene - Messinian) 

Table 3 Main hydrogeological units in the study area 

 

 

Figure 9 Study area: the post-orogenic sediments of the Esino river basin.  
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One reason of the selection of the Plio-Pleistocene hilly zone for the research, 

is that the landslide index reaches the maximum values in this area (Principi 

et al., 2007) 

The propensity of the study area to shallow slides is an additional motivation 

of its choice. Even though deep-seated landslides can occurs, the post-

orogenic complex is particularly affected by numerous and variably sized 

shallow landslides (flows and slides), especially involving the transitional 

layer between the weathered material and the substrate (Bisci and Dramis, 

1991).  

To understand the relationship between landslides and precipitation in post-

orogenic complex, the permeability (K) plays a very important role. 

Permeability indicates a measure of the ability of a porous material (often, a 

rock or unconsolidated material) to allow fluids to pass through it. Typically, 

the lithologies of this area have medium-low permeability, thus they have a 

discreet ability to store water. Given the aptitude of the soil at saturation, these 

landslides are often attributed to the cumulated rainfall over the area. 

However, literature review demonstrated the predominant influence of high 

intensity and short duration precipitation, for initiation of shallow landslides, 

due to infiltration processes (J. Zêzere et al., 2005). In conjunction with 

intense rainfall events, the partially saturated surficial covers, face numerous 

problems related to two triggering mechanisms: i) landslide initiation 

involving few meters of soil (typically 1-3 m), and ii) erosion involving 

thicknesses much more modest (a few centimeters) (Della Sala and Cuomo, 

2013). 

Indeed, shallow landslides are suitable with both empirical and physical 

prediction models for several reasons (Cervi et al., 2010): (a) the small sizes 

allow to represent landslides with a point at a regional scale, (b) the failures 

generally consist of relatively uniform geotechnical characteristics and 

constant thickness, (c) simplified models may deduct hydrological 

conditions, and (d) the complexity of the phenomena is lower than in larger 

landslides. 
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3.3 Methodology 
 

The methodology of this study aimed at answering the above-mentioned 

research questions (Chapter 3.1), in order to achieve the primary objective of 

determining the potential landslide rainfall thresholds with both empirical and 

physical methods. The analysis has been divided into four parts as explained 

in the following outline. 

 

The first part examined the correlation between rainfall and landslide in the 

post-orogenic complex of the Esino river basin. The very first step consisted 

of a thorough review and analysis of the input databases, which is the catalog 

of historical landslides and the time series of precipitation.  

For what concerns the catalog of historical landslides, information was 

gathered from different sources, among which the Marche CFR, managing 

reports about landslides events and ensuing landslide damage claims of local 

authorities. Other data were collected from a national catalog of landslide and 

flood sites. This catalog, called Vulnerable Areas of Italy (AVI) and available 

from the National Research Council (http://avi.gndci.cnr.it/), was 

commissioned in 1989 and kept updated until 2001. Moreover, the local Fire 

Department provided reports of technical actions regarding landslides. 

Finally, local newspaper articles were considered and subsequently were 

verified on-site for extension and entity. Data collected were georeferenced 

in the Gauss-Boaga coordinates and digitalized into a Geographical 

Information System (GIS). 

Time series of precipitation are daily collected through the local mechanical 

(MR) or telemetric (TR) rain gauges distributed in the study area or in the 

proximity. Rainfall data were extracted using the Sirmip On-Line (SOL) 

database, made available by the CFR and publicly accessible though the 

Marche Region’s Civil Protection website (http://84.38.48.145/sol). 

Landslides and rainfall data were compared to verify a potential correlation 

both in their mean annual and monthly trends. 

 

The second part consisted in the application of the empirical models on the 

study area. The aim of this section was to consider the hydrogeological 

properties in the calibration of empirical rainfall thresholds. The main 

novelties of this chapter lie in the selection of the area and the scale of 

analysis. The statistical approach here is applied at local scale (550 km2 are 

considered “local” for empirical models), to a peculiar study area with 

relatively uniform hydrogeological characteristics. Based on this assumption, 

cumulative event rainfall (E), rainfall duration (D), rainfall intensity (I), daily 
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rainfall (R) and antecedent rainfall (AD) has been computed for landslides 

events collected in the post-orogenic section.  

Three empirical rainfall thresholds models were applied: (i) the cumulative 

event rainfall – duration (ED) method, (ii) the intensity – duration (ID) 

method, and (iii) the Bayesian probabilistic method.  

For the first method, the cumulative precipitation and the duration of the 

rainfall events that triggered at least one landslide in the study area were 

plotted on a logarithmic graph. The distribution of data was then compared 

with some existing regional, national, and global thresholds in which the 

study area is included. In this chart, the number of landslides activated by 

each event was also taken into account to compare the values of the measured 

ED couples.  

The same technique was adopted for the intensity – duration method. 

Moreover, in this case, a local ID threshold that represents a greater than 10% 

likelihood of landslide initiation was computed. Additionally, based on the 

ID data dissemination, a probability graph was shown. This graph displays a 

cluster of lines, each of which represents, for any specific rainfall duration, 

the probability that a percentage of the known landslides lays below the line. 

Finally, the Bayesian statistical technique has been applied to analyze the 

most effective rainfall parameters and to draw probabilistic thresholds. The 

Bayesian investigation was initially used to find the probability of observing 

a landslide when a rainfall event of given magnitude occurs. This approach 

has been applied individually with daily, cumulated event, and antecedent 

rainfall. At a later stage, Bayes analysis has been employed by coupling the 

two variables of daily and antecedent rainfall.  

 

The third part involved the application of a physical model, the U.S. 

Geological Survey’s Transient Rainfall Infiltration and Grid-Based Regional 

Slope-Stability (TRIGRS) model (Baum et al. 2002), to simulate the pore 

pressure response to rainfall infiltration for the post-orogenic sediments of the 

Esino catchment. The aim of this section was to use a deterministic method, 

particularly the TRIGRS program, over a large area where data required are 

not always available. TRIGRS was chosen because the study area lithology 

tend towards saturation after rainfall, thus it is particularly suited for the 

model’s demand for saturated, tension-saturated, or nearly saturated initial 

conditions. TRIGRS also allows the computation of FS without requiring 

physical parameters that are very difficult to obtain in such large areas, i.e. 

the evapotranspiration index or multiple dimensions infiltration fluxes. 

The main novelties of this chapter lie in the use of a statistical process as input 

and, again, in the scale of the analysis. The physical model here is applied at 
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regional scale (550 km2 are considered “regional” for physically based 

models) in the same area of the previous section, which have relatively 

uniform hydrogeological features, and combined with a Geographic 

Information System (GIS).  

Hydrogeological and topographic (20m Digital Elevation Model) data for this 

spatial analysis have been obtained from the Civil Protection CFR. On the 

other hand, requirements as soil depths, groundwater conditions, or 

hydrologic and strength properties of the materials (i.e. cohesion c, unit 

weight of soil γ, angle of internal friction φ, volumetric water content θ, 

hydraulic diffusivity D0, saturated hydraulic conductivity KS, and the inverse 

of capillary fringe height or inverse of the air entry pressure head α) were not 

accessible. These parameters were derived in the analysis and assumed time 

invariant, whereas the pressure-head response resulting from rainfall 

infiltration was considered transient.  

Due to the lack of field data, mechanical and hydrological property values 

were assigned through a statistical analysis based on literature review of soils 

matching the local hydrogeological units. A soil texture class was identified 

for every hydrogeological unit found in the study area, namely clay, sandy-

clay and loam. The model was then calibrated by computing the pressure head 

variation for a single 1-D profile over a range of hydrological property values 

typical of the soil texture classes identified. For the simulation, TRIGRS was 

ran assuming saturated conditions with infinite depth of basal boundary 

(SAT-INF) and unsaturated soils with an impermeable basal boundary at a 

defined depth (UNS-FIN). It is so highlighted the variation in pressure head 

with the variation of saturated hydraulic conductivity, saturated hydraulic 

diffusivity and initial depth of the water table. 

Afterwards, the resulting variations of pressure head and factor of safety were 

compared with the landslides occurrence to identify the best fitting 

hydrogeological input conditions. Using calibrated inputs and a soil depth 

model, TRIGRS was ran for the entire study area. Finally, Receiver Operating 

Characteristic (ROC) analysis was applied to compare TRIGRS’s output with 

a shallow landslides inventory. 

 

The fourth part described the test of the models previously developed. The 

aim of this chapter was to compare the results and verify the effectiveness of 

the methodologies in a real case study. The validation was applied to the 

rainfall event that affected the study area, and most of the Region, from 2 to 

4 May 2014. For the landslides activated during this storm, the rainfall 

variables was computed and plotted in both the ED and ID graphs. 

Particularly the validity of ID threshold developed in this study was tested. 
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Moreover, the likelihood of landslide initiation was established with the 

Bayes analysis. Finally, the TRIGRS model was run using the rainfall patterns 

of the May 2014 event and the hydrogeological properties calibrated in the 

above section. The ROC analysis was applied to compare the number of grid 

cell predicted as unstable from TRIGRS and those effectively resulted in 

landslides. 
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4 Application of predictive models 

on the Esino river basin 

 

4.1 Landslide and rainfall patterns 
 

This chapter describes the results of the first phase of the research, namely 

the review and analysis of landslides and rainfall data in the post-orogenic 

complex of the Esino basin. Furthermore, a comparison between their annual 

and monthly trends is proposed to verify a connection between the two series.   

 

 

4.1.1 Historical landslides 

 

Based on the review of historical landslides, the study area was affected by 

234 landslides over the period 1953 to 2012. Although the meticulousness of 

the research, the review shows mainly shallow landslides (usually 1m of 

depth) triggered near transportation infrastructures, civil or industrial 

buildings. These failures have been reported to the authorities and the press 

because of the damage caused or the media exposure achieved in the territory. 

Therefore, the database obtained may not be completely exhaustive of the 

actual instability conditions of the area of interest.  

 

The landslide time series was initially plotted on annual basis as shown in 

Figure 10. Landslides affected the study area in almost every year of the 

observation period, except for 1993, 2000, 2002, 2003 and 2012. However, 

the years before 1990 shows discontinuity in the availability of data. In fact, 

the amount of reports found in that period is not significant. On the other 

hand, the years characterized by a relatively large number of events were 1990 

(30 landslides cataloged), 1996 (31), 1997 (18), 1998 (53), 2005 (20) and 

2011 (19). 

 

The time series was then observed considering the monthly distribution of 

landslides in the period 1953-2012 (Figure 11). Nearly half of these landslides 

(110) were triggered in December, 34 in January, and 21 in March. The 

months of June, July and August have been affected only by 1 o 2 landslides. 
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It has to be specified that many records were registered with uncertain date 

(Figure 12). Particularly, 155 landslides have been reported with certain day 

of initiation, whereas 31 have two days of uncertainty, 17 have three days of 

uncertainty, 11 have four days of uncertainty, 8 have five days of uncertainty, 

and 12 have three days of uncertainty. When the exact timing of the failure 

ranged from two dates, the landslide was considered as triggered in the last 

day of the period of uncertainty. For example, 24 landslides initiated between 

30 November and 1 December 1998. In this case, all the events were classified 

as if they had occurred the 1 December. For this reason, November is 

represented as a month with low landslide rate, but a much higher number of 

events may have characterized it. 

 

 

Figure 10 Landslide annual distribution from 1953 to 2012 in the study area. 
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Figure 11 Landslide monthly distribution from 1953 to 2012 in the study area 

 

 

Figure 12 Number of landslides with certain or uncertain time of failure. Figure shows the range of 

uncertainty in days. 
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So far, some observations can be done considering the seasonal trend. In fact, 

(Figure 13): 

(i) 161 (68.8%) landslides occurred in winter; 

(ii) 44 (18.8%) landslides occurred in spring; 

(iii) 25 (10.7%) landslides occurred in autumn; 

(iv)  4 (1.7%) landslides occurred in summer. 

Therefore, the large majority of events occurred in winter, followed by spring, 

autumn and lastly summer.  

 

 

Figure 13 Landslide seasonal distribution from 1953 to 2012 in the study area 

 

 

Figure 14 Landslides grouped per events from 1953 to 2012 in the study area 
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To have an overview of the temporal distribution, the landslides were also 

grouped into events, i.e. periods of subsequent days with slope failures 

(Figure 14). The analysis shows that the main periods with landslide are: 

a) 10-15 December 1990, in which 30 landslides were triggered; 

b) 7-10 October 1996, in which 10 landslides were triggered; 

c) 26 December 1996 - 5 January 1997 in which 36 landslides were 

triggered; 

d) 30 November - 4 December 1998, in which 50 landslides were 

triggered; 

e) 10-13 April 2005, in which 12 landslides were triggered; 

f) 1-9 March 2011 (mar-11a in Figure 14), in which 17 landslides were 

triggered. 

In all the other periods, the number of landslides recorded was less than 10. 

 

 

Figure 15 Landslides spatial distribution within the study area. Figure shows also the number of 

landslides collected per municipality and the hazardous areas from the PAI classification 

 

Data collected were georeferenced in the Gauss-Boaga system and digitalized 

into a GIS to allow a spatial comparison with other layers such as for example 

the administrative boundaries (Figure 15).  
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GIS analysis shows that certain municipalities included in the study area are 

more prone to landslides, such as Ancona, Apiro, Jesi, Mergo, Rosora, and 

Serra San Quirico. Other municipalities, among those that fall entirely within 

the basin, were not affected by landslides between 1953 and 2012 (e.g., 

Montemarciano and Monte San Vito).  

 

Furthermore, landslides were compared with the areas classified as hazardous 

by the National Plan for the governance of Hydrogeological Hazard - PAI 

(Regione Marche - Autorità di Bacino Regionale 2004 and updates) (Figure 

15). The PAI assigns four level of hazard (from 1 to 4) to polygons 

corresponding to past surveyed landslides, depending on the type of 

phenomenon (e.g., debris flow, slide, complex) and the state of activity 

(active, inactive or quiescent).  

Most landslides collected in this study are not located close to the areas 

classified hazardous by the PAI. Only 13% of the landslides is less than 50m 

from a H3 area (high hazard), 6% from a H2 area (medium hazard) and 2% 

from a H1 area (low hazard) (Figure 16). Moreover, only 21% of the 

landslides is less than 100m from a H3 area (high hazard), 5% from a H2 area 

(medium hazard) and 4% from a H1 area (low hazard) (Figure 17).  

 

 

 

Figure 16 Landslides occurred less than 50m from areas classified hazardous (H1, H2, and H3) by the 

PAI 
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Figure 17 Landslides occurred less than 100m from areas classified hazardous (H1, H2, and H3) by 

the PAI 

 

Finally, the 234 georeferenced landslides were analyzed based on the land use 

of the soil in which they have been triggered, following the methodology used 

in Carone et al. (2015). Data of land use were gained from the Corine Land 

Cover maps (1990, 2000, and 2006). Results shows that the majority of the 

landslides initiated in cultivated areas (162), followed by urbanized areas 

(43), and forested areas (19) (Figure 18). 

 

 

Figure 18 Land use of the soils affected by landslides from 1953 to 2012 in the study area  
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4.1.2 Rainfall patterns 

 

Time series of precipitation are daily collected through the local mechanical 

(MR) or telemetric (TR) rain gauges network of the Marche Civil Protection. 

MR are apparatuses in which the rainfall amounts are read manually whereas 

in TR are read by automatic weather station (AWS). 

Eleven rain gauges are located within and near the study area (Table 4 and 

Figure 19). Rainfall series of these stations were extracted using the Sirmip 

On-Line (SOL) database, made available by the Marche CFR. Table 4 lists 

the rainfall stations by name and reference code, type of network (mechanical 

or telemetric), and time of availability.  

Table 4 illustrates that 5 rain gauges are part of the TR network, activated 

from 2003 or later and still operating, whereas 6 devices are part of the MR 

network, activated in 1951 and dismantled between 2007 to 2011. The rain 

gauge at Poggio San Romualdo is located at the highest elevation (926m asl). 

In fact, it is positioned in the mountainous portion of the basin, located further 

west of the area of interest (Figure 19). The rain gauge that is instead at the 

lowest altitude is Ancona (Torrette) (6m), which is located in the coastal 

portion between the Esino and Musone basins. The remaining rain gauges are 

well distributed for altitude and are located both in the hills and in the alluvial 

and coastal plains. 

 

Thereafter, with the values acquired from the rain gauges, the average annual 

and monthly rainfall have been computed over the period observed. Usually, 

for climatological studies, the mean precipitations are computed over three 

decades (e.g., 1961-1990, 1981-2010). In this research, landslides were 

triggered over about 60 years. In order to cover six decades, the averages 

values of rainfall have been calculated for the years 1951-2011 (2012 was not 

affected by landslides). 

Figure 20 shows the Mean Annual Precipitation (MAP) fell over the study 

area during the years subject to landslides, from 1953 to 2011. The values 

displayed have been averaged among the available rain gauges. The average 

MAP (red line) represents the mean yearly rainfall computed from 1951 to 

2011 in every gauge. The graph indicates a fluctuation of the rainy and dry 

years. Particularly, the years 1996, 1998, 1999, 2002, 2005, and 2010 are 

considered rainy because their MAPs are higher than the six decades average. 

On the other hand, the years 1990, 1992, 1993, 1994, 2000, 2001, 2003, 2007, 

2009, and 2011 are considered dry because the MAPs are lower than the 

mean. 
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Figure 19 Rain gauges network of the study area 

Rain gauge 

code 

Rain gauge 

name 

Height 

[m] 

Netwo

rk 

Data availability 

[years] 

Ag [1220] Agugliano 170 TR 2003-nowadays 

A-T [2009] 
Ancona 

(Torrette) 
6 MR 1951-2011 

Ap [2066] Apiro 516 MR 1951-2009 

Cu [2062] Cupramontana 510 TR 2003-nowadays 

Cu [1263] Cupramontana 506 MR 1951-2008 

Je [2063] Jesi 100 TR 2003-nowadays 

Je [1213] Jesi 96 MR 1951-2008 

Mo [2067] Moie 110 MR 1951-2011 

PSR [2064] 
Poggio S. 

Romualdo 
926 MR 1991-2007 

PSV [2848] 
Poggio S. 

Vicino 
580 TR 2009-nowadays 

SG [1413] San Giovanni 625 TR 2001-nowadays 

Table 4 List of the rain gauges in study area. MR = mechanical rain gauge, TR = telemetric rain gauge 
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Figure 20 MAP and average precipitation for the years with landslides (1953-2011) 

 

 

 

Figure 21 Mean Monthly Precipitation (MMP) for the period 1951-2011 
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Figure 21 shows the Mean Monthly Precipitation (MMP) of the study area 

from 1951 to 2011. Here as well, the computations regard the average values 

of all the rain gauges before mentioned. The rainfall monthly distribution 

shows a seasonal trend with autumn, winter and spring presenting peaks of 

precipitation over the mean. In particular, November and December are the 

rainiest months of the zone. On the contrary, the summer and the second part 

of the winter usually present rainfall values below the mean. This is 

confirmed especially in July. 

 

 

4.1.3 Correlation between landslides and rainfall 

 

The historical series of landslides and rainfalls, thus acquired, were compared 

both on annual and monthly basis. The purpose was to verify a potential 

correlation and validate the hypothesis that in the study area the landslides 

initiation is generally related to the precipitation. 

Based on previous studies (e.g. Berti et al. 2003), the statistical method of the 

correlation function was used to establish the possible existence of a 

relationship between the above series. The correlation function represents the 

link between two variables (X and Y) which assume the following values: 

(X1, Y1), (X2, Y2)… (Xn, Yn). The correlation coefficient (r) was calculated 

with the formula below: 

 

𝑟 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑛

𝑖=1

√∑ (𝑋𝑖−𝑋̅)2𝑛
𝑖=1 ∑ (𝑌𝑖−𝑌̅)2𝑛

𝑖=1

        (11) 

 

where xi is the ith value of the first matrix of data, yi is the ith value of the 

second matrix of data, x̅ is the medium value of the first matrix of data and y̅ 

is the medium value of the second matrix of data. The result of the correlation 

function is always between -1 and +1. If the value of the formula tends to one 

(+1), the link between the two series is positive, which means that both the 

values increase or vice versa. If the value of the formula tends to minus one 

(-1), the link between the two series is negative, which means that as the value 

of one increases the other decreases. Instead, if the value of the formula tends 

to zero (0), there is no connection between the series, which means that these 

are not mutually dependent. 

 

First, the annual landslide and rainfall distribution were compared (Figure 

22). The diagram shows that, in general, the greater is the cumulated annual 
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rainfall the greater is the number of landslides of the area but the correlation 

coefficient of the series is very low (r = 0.16). In the 1994-1998 and in the 

2003-2010 periods, a certain correspondence between the sets is pointed out. 

In these years, when the MAP of the rain gauges is above the average, a peak 

of landslide is registered. Contrarily, years particularly dry resulted in few or 

even none slope failure. The great anomaly is represented by the 1990 in 

which the rainfall data recorded were below the mean, but the number of 

landslides remarkably high. In fact, in 1990 the database was affected by the 

lack of a large number of rainfall data from the rain gauges of Apiro, 

Cupramontana and Poggio San Romualdo, due to nonfunctional stations.  

 

 

Figure 22 Comparison between landslide and rainfall annual distribution (MAP) within the study area 

(period 1953-2011) 

 

Then, the monthly frequency of landslides and the series of the mean monthly 

precipitation were compared (Figure 23). The correspondence in this graph is 

higher than in the annual chart. The correlation coefficient r is equal to 0.43. 

Overall, the largest number of landslides is activated during one of the rainiest 

month. In autumn and winter, peaks of landslides are recorded when the 

precipitation are higher than the mean. Exception is the month of November. 

Although it shows the highest values of mean precipitation, the highest 

number of landslides manifests in December.  

On the contrary, the months with the lowest number of slope failures (July 

and August) also correspond to the driest periods. 
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Figure 23 Comparison between landslide and rainfall monthly distribution (MMP) within the study 

area (period 1953-2011) 
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4.2 Empirical models 
 

This chapter describes the results of the second phase of the research, which 

is the application of empirical models for (a) the analysis of the rainfall 

characteristics that triggered landslides in the post-orogenic complex of the 

Esino basin and (b) the calculation of rainfall thresholds for the initiation of 

future failures.  

Three statistical approaches are applied: (i) the cumulative event rainfall– 

duration method, (ii) the intensity – duration method, and (iii) the Bayesian 

probabilistic method.  

The use of these methods in the same bounded area (local scale), containing 

lithologies with comparable hydrogeological properties, represents an 

uncommon technique that allows considering the geological features of the 

application zone. 

 

 

4.2.1 Cumulative event rainfall – duration (ED) method 

 

The first method consisted in the comparison of the cumulative event rainfall 

(E) and the rainfall duration (D) of the events that triggered the 234 landslides 

recorded during the first step (Chapter 4.1).  

 

 

4.2.1.1 Methodology 

 

In this study, a “rainfall event” is identified as a period of one or more days 

in which a continuing rainfall, of at least 1mm/day, is registered. The 

“cumulative event rainfall” is defined as the total rainfall measured from the 

beginning of the rainfall event to the time of failure (in mm) (Guzzetti et al., 

2008). Unfortunately, for this database, the exact hour of landslide initiation 

is not available. Sometimes, as described before, a range of uncertainty exists 

also for the day of the triggering. For this reason, the cumulative event rainfall 

of the study is the total rainfall measured from the beginning to the end of the 

rainfall event in which one or more landslides are activated. Similarly, the 

“duration” is defined as the length of the rainfall event (in h) (Caine, 1980).  

 

To compute the rainfall parameters, every mass movement has been related 

with the nearest rain gauge among the eleven considered in the catchment 
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area. Specific areas of influence were defined using the method of the 

Thiessen polygons (Croley and Hartmann, 1985) (Figure 24). This method is 

a simple geometric process, which define an area of influence for each rain 

gauge wherein the precipitation is considered constant and equal to the value 

of rainfall measured by the rain gauge itself. Consequently, each rain gauge 

was connected to the pertaining landslides. When the reference station was 

not functioning at the time of failure, the second closest gauge was chosen as 

datum point (and so on). 

 

 

Figure 24 Thiessen polygons obtained through the rain gauges network of the study area. Each 

landslide was associated to the polygon, thus the rain gauge, in which is located. 

 

Afterwards, the rainfall events that triggered the 234 landslides of the 

database have been identified.  Moreover, these events has been divided in 

four categories: main events (those triggering more than 10 landslides), 

secondary events (those triggering from three to nine landslides), minor 

events (triggering two landslides) and single events (triggering one landslide).  

Following, the cumulative event rainfall and the duration of the specified 

events that triggered at least one landslide in the study area have been 

computed and plotted on a logarithmic graph.  The points in the graph 

correspond to the precipitation patterns (ED) of every rain gauge related to a 
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rainfall event (e.g. the nov-91 event triggered 4 landslides that were referred 

to 4 different polygons and thus 4 gauges). 

Finally, a comparison between the data distribution on the diagram and some 

multi-scale rainfall thresholds existing in literature is proposed. 

 

 

4.2.1.2 Results 

 

Results from the Thiessen method shows that the rain gauge stations with the 

influence on the largest number of failures are Moie (MR) with 64 events, 

Cupramontana (MR) with 53 events and Jesi (MR) with 45 events (Table 5). 

These rain gauges are located in the central zone of the post-orogenic 

complex. Instead, those located outside the basin have been related to less 

landslides: 18 events for Ancona (Torrette), 2 events for Poggio San 

Romualdo and Poggio San Vicino, 3 events for San Giovanni (Table 5).  

 

 
Ag 

[1220] 

A-T 

[2009] 

Ap 

[2066] 

Cu 

[2062] 

Cu 

[1263] 

Je 

[2063] 

Je 

[1213] 

Mo 

[2067] 

PSR 

[2064] 

PSV 

[2848] 

SG 

[1413] 

Landslides 11 18 27 53 1 45 8 64 2 2 3 

Table 5  Number of landslides pertaining to each rain gauge of the study area. 

 

With the values extracted from the rain gauges, 45 rainfall events that 

triggered the 234 landslides studied were identified. Each event initiated a 

certain number of slope failures, from one to a maximum of 19 (activated on 

10-15 December 1990 in the Mo [2067] area of influence). Particularly, there 

were documented: 

(i) 6 main events (≥ 10 landslides), corresponding to 155 landslides; 

(ii) 9 secondary events (3-9 landslides), corresponding to 40 landslides; 

(iii) 9 minor events (2 landslides), corresponding to 18 landslides ; 

(iv)  21 single events (1 landslide), corresponding to 21 landslides. 

 

The logarithmic ED graph (Figure 25) shows the distribution of the four 

classes of rainfall events.  

First, it is observed that duration ranged between 4 and 167 h, whereas the 

event rainfall ranged between 1.2 and 191.6 mm/h. It is notable that, except 

for one outlier, the greater is the duration and the greater is the cumulated 
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rainfall. Moreover, the main events are characterized by the highest amounts 

and durations, whereas the single events have the lowest values. Minor and 

secondary occurrences are situated in the intermediate conditions.  

 

 

Figure 25 Cumulated event rainfall – duration logarithmic graph. Highlighted also is the difference 

among the events that triggered only 1 landslide (square), 2 (circle), 3-9 (triangle) or more than 10 

(diamond) landslides 

 

Data distribution have been compared to some global (Caine, 1980), regional 

(Kanji et al., 2003; Peruccacci et al., 2012; Vennari et al., 2014) and local 

(Annunziati et al., 2000) ED rainfall thresholds (Figure 26). These curves 

represents the minimum thresholds of the data to which they are referred. In 

the cases of Peruccacci et al. (2012) and Vennari et al. (2014), the curves 

show the 1% or 5% exceedance probability levels.  

It is observable that the thresholds have slopes similar to the general tendency 

of the data. In fact, Caine (1980) described a global threshold, Kanji et al. 

(2003) developed a regional threshold for Brazil and Annunziati et al. (2000) 

a local threshold for an area in the Apuan Alps. These curves are all located 

above the data dispersion. Better results are gained with the remaining 

regional thresholds of Vennari et al. (2014) for Calabria region and most of 

all with Peruccacci et al. (2012) for the post-orogenic sediments of Abruzzo, 



94 

 

Marche and Molise. Nonetheless, these latest curves do not represent the 1% 

or 5% of exceedance probability of the Esino area data. 

 

 

Figure 26 Cumulated event rainfall – duration distribution, compared with some global, regional and 

local thresholds 

 

 

4.2.2 Intensity – duration (ID) method 

 

The second empirical method calibrated in the study area is the rainfall 

intensity (I) and duration (D) model.  

 

 

4.2.2.1 Methodology 

 

The same methodology of the ED model is adopted for the computation of 

the rainfall events and parameters of the ID method. 

As a result, logarithmic graphs of the mean and maximum intensity compared 

with the duration of the rainfall events, that triggered at least one landslide in 

the study area, are plotted. The “mean intensity” (in mm/h) is defined as the 

average rate of precipitation of the rainfall event and the “maximum 
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intensity” (in mm/h) is the highest rate of precipitation of the rainfall event. 

The “duration” (in h) is defined as before. 

  

A threshold for the mean intensity – duration chart is also proposed. 

Frequently, a rainfall threshold is drawn by adopting a mathematical function 

that visually fit the lower boundary of the data plotted in the logarithmic 

graph. The method used for the computation of the threshold in this study 

involved two steps. First, the equation describing the intensity-duration 

threshold was computed in the form of the power law regression of the plotted 

dataset; this has enabled the computing of the β (slope) value of the equation. 

Second, the curve was shifted along the vertical axis to extract the α 

(intercept) value that split the cloud of data in two parts: the 90% of the data 

above the curve and the remaining 10% below the curve. This allowed to 

exclude from the threshold equation those landslides triggered by very low 

values of intensity-duration. In fact, particular local condition (e.g. antecedent 

wetness, slope, human activities) might have a key role for the initiation of 

landslides. 

 

Furthermore, a technique suggested by Guzzetti et al. (2007) was adopted to 

portray percentile estimates of the rainfall ID conditions. The purpose was to 

approximate the values of the mean intensities for the empty logarithmic bins 

of duration. Starting from the minimum value of duration and up to the 

maximum, a moving window of 5 data has been identified among the rainfall 

events. For example, at the nth duration value a range of 5 data, centered in 

the nth value and including the two before and the two after, has been 

considered. All the data points in the 5-bin moving window were selected, 

and the percentiles of the intensity values were computed. The 2nd , 5th , 10th 

, 20th , 30th , 40th , 50th , 60th , 70th , 80th, and 95th percentiles of the rainfall 

intensities were calculated and attributed to the central point. Results of the 

analysis are plotted in a diagram that shows the probability lines drawn by 

linking equal percentile points. 

 

 

4.2.2.2 Results 

 

Results of the analysis were first plotted in a logarithmic chart displaying the 

maximum intensities and the duration of the rainfall events (Figure 27). In the 

study area, the maximum intensities ranged between 0.4 and 37.4 mm/h. The 

first observation is that the general trend, excluding the outlier, is opposite to 
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the ED model. The higher is the duration of an event and the smaller is the 

maximum precipitation rate needed to trigger at least a landslide. Moreover, 

the main events are characterized by lower maximum intensities than those 

required to activate secondary and minor events. Despite considerable 

scattering along the x and y axes, the ID combinations of single events are 

located below the other events. 

 

 

Figure 27 Maximum intensity – duration logarithmic graph. 

 

Figure 28 shows the logarithmic chart of the mean intensities and durations 

that affected the Esino study area(Gioia et al., 2015b). First, it is notable that 

the mean intensity ranged between 0.3 to 5.3 mm/h. Second, the graph 

confirms the findings of Caine (1980), namely that with the increase of 

rainfall duration, the minimum average intensity likely to trigger shallow 

slope failures decreases in the logarithmic plot. Additionally, a significant 

difference exists between the ID values of single and main events. These last 

events have considerable higher duration and lower mean intensities than the 

first ones. The secondary and minor events lie in between. 
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Figure 28 Intensity-duration logarithmic graph with the power-law threshold for this study (red line) 

and the thresholds developed by Brunetti et al. (2010), Caine (1980), Giannecchini (2006) and Guzzetti 

et al. (2008). 

 

The trend observed in Figure 28 supports the definition of a minimum rainfall 

ID threshold for the occurrence of landslides. The threshold curve (red line) 

has the following power law equation: 

 

𝐼 = 1.61 × 𝐷−0.21        (12) 

 

where I is the mean rainfall intensity (mm/h) and D is the rainfall duration (h) 

(Figure 28). This equation represents the minimum intensity-duration 

conditions that activated 90% of the studied landslides over the past decades. 

Moreover, the comparison of the global (Caine, 1980; Guzzetti et al., 2008), 

regional (Brunetti et al., 2010) and local (Giannecchini, 2006) thresholds 

reveals that the local threshold for the study area is systematically lower than 

the global curve of Caine (1980) and the local curve of Giannecchini (2006). 

The equation is more comparable with the Brunetti et al. (2010) threshold 

developed for the Abruzzo region, bordering the southern part of Marche, and 

the Guzzetti et al. (2008) global threshold. 
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Finally, Figure 29 shows the probability lines resulted from the computations 

of the percentiles. These lines support the interpretation of the ID data in 

Figure 28. For example, for any specific rainfall duration, the second 

percentile curve represents the probability that the 2% of the known landslide 

events lays below the line. For the analysis, the outlier was not considered. 

Inspection of Figure 29 confirms the linear scaling of the minimum level of 

rainfall intensity likely to trigger landslides. However, for small durations the 

probability lines are more separated than for durations exceeding 20h.  

 

 

Figure 29 Percentile estimates (2nd, 5th, 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, and 95th) of rainfall 

ID conditions. 

 

4.2.3 Bayesian probabilistic method 

 

The third method applied in the study area is the determination of 

probabilistic rainfall thresholds based on the Bayes’ theorem. 

 

4.2.3.1 Methodology 

 

Of all the landslides that occurred in the study area between 1953 and 2012, 

only those of the period 1990-2012 are considered for this analysis. The 
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reason is that this model requires examining a set of data not discontinuous. 

Consequently, a total number of 210 landslides were conveyed in a GIS 

environment (Figure 30).  

In addition, the operational rain gauges for each year from 1990 to 2012 were 

selected. Only rain gauges with at least 80% of data available (quality level) 

were considered. Next, the precipitation data of the stations related to one or 

more landslides per year were extracted. It was decided not to get the entire 

rainfall series (from 1990 to 2012) because it is possible that landslides 

occurred also over the years lacking information, without being reported. A 

probabilistic analysis, including the distribution of non-triggering rainfall, is 

much more informative and is capable of assign a reliability to a given 

threshold. However, analyzing only the years with slope failures helps to 

overcome the problems of underestimation. The years in which at least one 

landslide in the study area has been recorded are: 1990, 1991, 1992, 1994, 1995, 

1996, 1997, 1998, 1999, 2001, 2004, 2005, 2006, 2007, 2008, 2009, 2010, and 2011. 

 

 

Figure 30  Landslides considered for the Bayesian model. Figure shows also an example of the rain 

gauges selected for the year 1990 analysis. 
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For the Bayesian model, the Thiessen polygons technique was not used. A 

major limitation of that approach is the significance of the data from a 

statistical point of view. In fact, by dividing the study area (550km2) in 

polygons, the number of historical landslides in each area can be very small 

(1-2 events or even 0), thus leading to inaccurate estimates of landslide 

probability. One way to pass this problem is to consider the study area as a 

whole, by calculating a single value of rain interpolated from every gauge 

functioning at the time analyzed. Consequently, landslides are considered in 

the totality. To calculate the interpolated data of rain was used the method of 

Inverse Distance Weighting (IDW). The interpolated precipitation can be 

compared to the concept of areal average precipitation. The areal rainfall 

represents the corresponding value of precipitation that equally falls over the 

entire area of interest. 

As a result, the rainfall events were identified. For these events, the cumulated 

event rainfall has been computed. Moreover, daily and antecedent rainfall of 

5, 7, 15, and 30 days were calculated. 

 

Once identified the precipitations parameters, the probability of landsliding, 

conditional to the characteristics of the rainfall events, was evaluated. In 

particular, the Bayes’ theorem is expressed by the equation (9): 

 

𝑃(𝐴|𝐵) =
⋅𝑃(𝐵|𝐴)⋅𝑃(𝐴)

𝑃(𝐵)
. 

 

In this study, the method is computed in terms of relative frequencies as 

proposed by Berti et al. (2012). The probability terms can be approximated 

to: 

- P(A) = NA/NR; 

- P(B) = NB/NR; 

- P(B|A) = NB|A/NA; 

where NR is the total number of rainfall events identified, NA is the total 

number of landslides occurred, NB is the number of rainfall events of 

magnitude B, and NB|A is the number of rainfall events of magnitude B that 

resulted in landslides. Thus, equation (9) reduces to: 

 

𝑃(𝐴|𝐵) =

𝑁𝐵|𝐴

𝑁𝐴
⋅
𝑁𝐴
𝑁𝑅

𝑁𝐵
𝑁𝑅

=
𝑁𝐵|𝐴

𝑁𝐵
         (13) 

 

In the methodology described so far there is no discrimination between 

rainfall events that triggered one landslide and those that activated multiple 
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landslides. At these conditions, in fact, NA represents the number of events 

with occurred slope failures and P(A) is the probability of having at least a 

landslide in the study area. P(A|B), that is the probability that a given quantity 

of rain triggers at least a landslide, is the result to be obtained.  

The method returns a value of landslide probability (from 0 to 1) for each 

combination of the selected variables (A and B). To rate P(A|B), 4 classes 

have been used. These classes correspond to a confidence level of low, 

medium, medium-high and high probability of occurrence (Table 6). 

 

P(A|B) % Level 

0-35 Low 

36-50 Medium 

51-65 Medium-high 

66-100 High 

Table 6 Probability intervals and levels of confidence used to classify the results of the Bayesian model 

 

Thus far, the one-dimensional approach of the Bayes’ theorem has been 

adopted. In this case, the only control variable is B, which represents a rainfall 

event with a certain magnitude. For the study, B has been expressed in terms 

of cumulated event rainfall (E), daily rainfall (R), and antecedent rainfall (A5, 

A7, A15, and A30). P(A|B) has been computed for all these significance 

attributed to the variable B. 

 

A further analysis consisted in the application of the two-dimensional 

approach, in which two control variable (B and C) are considered. The 

resulting equation is in the form: 

 

𝑃(𝐴|𝐵, 𝐶) =
⋅𝑃(𝐵,𝐶|𝐴)⋅𝑃(𝐴)

𝑃(𝐵,𝐶)
         (14) 

 

where the notation B, C indicates the joint probability of having a certain 

value (or range of values) of the two variables. Any pair of variables can be 

considered in the two- dimensional Bayesian analysis. For this study, B and 

C have been represented by the control variables among the best performing 

of the one-dimensional case: daily rainfall (R) and five days antecedent 

rainfall (A5). The performance of the computed probabilities can be evaluated 

by comparing the posterior probability P(A|B) to the prior probability P(A). 

If the conditional event B is significant for the initiation of landslide in the 

study area, the posterior probability lies above the corresponding prior 
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(P(A|B)>P(A)). If the conditional event B is irrelevant to the process, the two 

probability distributions P(B) and P(B|A) would have roughly the same 

values (P(A|B)≈P(A)). 

 

The two-dimensional model was accomplished by creating a B-C plane 

divided into 16 regions delimited by intervals of B and C values. Equation 

(14) is then computed separately for each region obtaining probabilistic 

information in the B-C space. 

 

 

4.2.3.2 Results of one-dimensional approach 

 

The Bayesian one-dimensional approach have been applied first to the 

cumulated event rainfall (E), then to the daily rainfall (R), and finally to the 

antecedent rainfall (A5, A7, A15, and A30). The values of E, R, and AD are 

referred to areal averages of the entire study area. 

A summary description of the input data for all the analyses is proposed in 

Table 7. The values of NB are not specified, because they vary depending on 

the magnitude of B (i.e. the rainfall parameters and intervals) considered in 

each test.  

 

CONTROL VARIABLE E R A5 A7 A15 A30 

NR 1126 2480 5878 6717 8023 8365 

NA 29 45 57 57 60 60 

Table 7 Number of rainfall (NR) and landslide (NA) events considered as input for the Bayesian analyses 

 

Results of the Bayesian model applied for the cumulated event rainfall 

recorded in the Esino post-orogenic complex are presented in Figure 31and 

Figure 32.  

Figure 31 shows the distribution of prior landslide probability P(A), prior 

rainfall probability P(B), conditional probability P(B|A) and conditional 

landslide probability P(A|B) for event rainfall (E) values from 10mm to 

200mm. Particularly, P(A), P(B), P(B|A), and P(A|B) are calculated for 

E≥10mm, E≥15mm, and so on. Results reveal descending values of P(B) and 

P(B|A), whereas the P(A/B) is always ascending. For E≥140mm the case 

study is just one (147mm), therefore the computation of probabilities has no 

statistical significance.  The figure also shows a P(A|B)>P(A), thus the event 

rainfall is significant for the initiation of landslides in the study area. 
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Figure 31 Comparison of P(A), P(B), P(B|A), and P(A|B) for different values of E 

 

Figure 32 Computed values of P(A), P(B), P(B|A), and P(A|B) for four intervals of E 

Figure 32 displays the values of P(A), P(B), P(B|A), and P(A|B) computed 

for four classes of E: 1-40mm, 40-80mm, 80-120mm, >120mm. In the first 
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two classes, according to Table 6, the probability of occurrence of one or more 

landslides is low. This probability is medium in the third class and high in the 

fourth class.  It is notable also that P(A|B)>P(A), except for 1≤E≤40mm. 

 

The Bayesian statistic model applied for the daily rainfall (R) provides the 

results illustrated in Figure 33 and Figure 34.  

The same observation made for Figure 31, can be transposed for Figure 33, 

except for the ascending trend of P(A/B) which continues towards the value 

of one. Thus, the significance of the daily rainfall is high. In fact, the few 

events with daily rainfall greater than 65mm all resulted in at least a landslide, 

thus P(A|B)=1. The maximum value of R in the study area is 68.4mm. 

Figure 34 shows the outcomes of P(A), P(B), P(B|A), and P(A|B) computed 

for four classes of R: 1-20mm, 20-40mm, 40-60mm, >60mm. The first three 

classes listed display increasing values of P(A|B), but they all conform to a 

low level of probability. The third class is at the boundary line with the 

medium level. However, when R exceeds 60mm, P(A|B) decisively increases 

to high likelihood of occurrence.  

 

 

Figure 33 Comparison of P(A), P(B), P(B|A), and P(A|B) for different values of R 
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Figure 34 Computed values of P(A), P(B), P(B|A), and P(A|B) for four intervals of R 

 

The Bayesian method has been applied also considering the antecedent 

rainfall as the control variable. The following figures (from Figure 35 to 

Figure 42) shows the distributions of P(A), P(B), P(B|A), and P(A|B) 

considering 5 days (Figure 35 and Figure 36), 7 days (Figure 37 and Figure 

38), 15 days (Figure 39 and Figure 40), and 30 days (Figure 41 and Figure 

42) of antecedent rainfall. These intervals were considered to verify the best 

period to be taken into account in the forecast activity. 

P(A), P(B), P(B|A), and P(A|B) were computed for antecedent rainfall (AD) 

values ranging from 10mm to 200mm and for four classes of AD: 1-30mm, 

30-60mm, 60-90mm, >90mm. 

The first remark is that, for all the analyses, even if P(B) and P(B|A) are 

always decreasing, the increasing of P(A|B) is considerably lower compared 

to the case of E and R. The P(A|B) increment is quasi null for A15 and A30. 

More specifically, the analysis carried out for A5 is the one with the maximum 

values of resulting P(A|B). In fact, only the third and fourth intervals 

considered have P(A|B)>P(A) with probability levels corresponding to low 

(Figure 36). The same notes can be done for A7, which is a period of 

antecedent rainfall very close to A5, but with lower resultant P(A|B) (Figure 

38). Moreover, the results of A15 shows a slightly increase of P(A|B) for the 

fourth interval, whereas for A30 there is no evidence. 
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Figure 35 Comparison of P(A), P(B), P(B|A), and P(A|B) for different values of A5 

 

 

Figure 36 Computed values of P(A), P(B), P(B|A), and P(A|B) for four intervals of A5 
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Figure 37 Comparison of P(A), P(B), P(B|A), and P(A|B) for different values of A7 

 

 

Figure 38 Computed values of P(A), P(B), P(B|A), and P(A|B) for four intervals of A7 
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Figure 39 Comparison of P(A), P(B), P(B|A), and P(A|B) for different values of A15 

 

 

Figure 40 Computed values of P(A), P(B), P(B|A), and P(A|B) for four intervals of A15 
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Figure 41 Comparison of P(A), P(B), P(B|A), and P(A|B) for different values of A30 

 

 

Figure 42 Computed values of P(A), P(B), P(B|A), and P(A|B) for four intervals of A30 
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The output obtained from the one-dimensional Bayesian model, led to the 

choice of the two control variables to be tested for the two-dimensional 

model.  

 

 

4.2.3.3 Results of two-dimensional approach 

 

The two-dimensional Bayesian approach was applied to two control 

variables: daily rainfall (R) and five days antecedent rainfall (A5). The reason 

of this choice is because, even if R and E are the best performing variables, 

when considered together the data overlap. Indeed the event rainfall includes 

also the daily rainfall. Therefore, the two-dimensional method has been 

applied to the antecedent rainfall variable with more significant results.  

 

The analysis was accomplished by creating a R-A5 plane divided into 16 

regions delimited by intervals of daily rainfall and five days antecedent 

rainfall (Table 8 and Figure 43). Results of equation (14) have been plotted 

in the R-A5 space for every region. 

For example, the upper-left quadrant of Table 8 and Figure 43 represents the 

posterior probability of initiating at least a landslide within the study area, 

given a rainfall event of 0≤A5≤20mm and R≥60mm (P(A|A5,R)). The colors 

of cells and histograms correspond to the levels described in Table 6. The “no 

applicable” areas (NA) indicate rainfall conditions that never occurred in the 

Esino post-orogenic complex during the considered period. The values of 

P(A|A5,R)=0 represent rainfall conditions which never resulted in landslides 

during the considered period. 

The model’s outputs show that in general landslide probability increases with 

both daily and antecedent rainfall. The maximum probability value of 1.0 are 

reached for rainfall events with 20≤A5≤40mm and R≥60mm or for rainfall 

events with A5≥60mm and 40≤R≤60mm. Medium-high probability levels 

characterize rainfall events with 20≤A5≤40mm and 40≤R≤60mm or for 

rainfall events with A5≥60mm and 20≤R≤40mm. The remaining probabilities 

computed are included in the low probability level. 
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≥60 0,00 1,00 NA NA 

40-60 0,24 0,57 0,00 1,00 

20-40 0,03 0,03 0,09 0,60 

0-20 0,00 0,01 0,01 0,09 

R 

     A5 
0-20 20-40 40-60 ≥60 

Table 8 Values of the computed P(A/A5,R) classified in 16 combinations of A5 and R (in mm) 

 

 

 

Figure 43 Histograms of conditional landslide probability P(A/A5,R) for 16 different combinations of 

A5 and R 
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4.3 Physical model 
 

This chapter describes the third part of the analysis, which is the application 

of the U.S. Geological Survey’s Transient Rainfall Infiltration and Grid-

Based Regional Slope-Stability (TRIGRS) model (Baum et al., 2008, 2002, 

2010) to the Esino post-orogenic complex. Previous studies have successfully 

applied physical models, and particularly the TRIGRS, to compute 

infiltration-driven changes in the hillslopes’ factor of safety on small scales 

(i.e. tens of square kilometers). Indeed, soil data inputs for such models are 

difficult to obtain across larger regions. This work describes a novel 

methodology for the application of TRIGRS over broad areas with relatively 

uniform hydrogeological properties (Gioia et al., 2016). 

 

 

4.3.1 Theoretical basis of the TRIGRS model 

 

TRIGRS is a Fortran program designed for modeling the timing and 

distribution of shallow, rainfall-induced landslides. TRIGRS employs a 

distributed approach to model transient vertical groundwater flow over a 

digital landscape. It uses approximate analytical solutions of the Richards 

equation (Richards, 1931) for saturated (Iverson, 2000; Savage et al., 2003) 

and variably saturated conditions (Savage et al., 2004; Srivastava and Yeh, 

1991) to determine the pressure head, the factor of safety and their spatial and 

temporal variations. 

 

The governing equations of the TRIGRS model for wet initial conditions are 

based on a linearized solution of the Richards equation proposed by Iverson 

(2000) and implemented by Baum et al. (2002). The pressure head time-

dependent vertical distribution for infinite depth is so described: 

 

𝜓(𝑍, 𝑡) = (𝑍 − 𝑑)𝛽 + 2 ∑
𝐼𝑛𝑍

𝐾𝑆
{𝐻(𝑡 − 𝑡𝑛)[𝐷1(𝑡 −𝑁

𝑛=1

𝑡𝑛)]
1

2 𝑖𝑒𝑟𝑓𝑐 [
𝑍

2[𝐷1(𝑡−𝑡𝑛)]
1
2

]} − 2 ∑
𝐼𝑛𝑍

𝐾𝑆
{𝐻(𝑡 − 𝑡𝑛+1)[𝐷1(𝑡 −𝑁

𝑛=1

𝑡𝑛+1)]
1

2 𝑖𝑒𝑟𝑓𝑐 [
𝑍

2[𝐷1(𝑡−𝑡𝑛+1)]
1
2

]}  (15)  

 



113 

 

where Ψ is the pressure head, t is time, 𝑍 =
𝑧

cos 𝛿
 is the vertical depth, z is the 

slope-normal coordinate direction, δ is the slope angle, d is the steady-state 

depth of the water table, 𝛽 = 𝑐𝑜𝑠2 𝛿 − (
𝐼𝑍𝐿𝑇

𝐾𝑆
) the steady initial surface flux, 

KS is the saturated hydraulic conductivity in the Z direction, InZ is the surface 

flux at the nth interval, 𝐻(𝑡 − 𝑡𝑛) is the Heaviside step function, tn is the time 

at the nth interval, 𝐷1 =
𝐷0

𝑐𝑜𝑠2 𝛿
_0 = 𝐾_𝑆/𝑆_𝑆  is the saturated hydraulic 

diffusivity, SS is the specific storage and N is the total number of time 

intervals. The function ierfc is of the form 𝑖𝑒𝑟𝑓𝑐(𝜂) =
1

√𝜋
exp(−𝜂2) −

𝜂𝑒𝑟𝑓𝑐(𝜂) where erfc(η) is the complementary error function. The first term 

of equation (15) consists of a steady (long-term) component and the 

remaining terms a transient (short-term) infiltration component. 

 

The analytical solution for unsaturated groundwater flow considers the soil 

as a two-layer system consisting of a saturated zone with a capillary fringe 

above the water table and an unsaturated zone extending from the top of the 

capillary fringe to the ground surface. The unsaturated zone acts like a filter 

absorbing part of the infiltrated water from the ground surface; the remaining 

water accumulates at the base of the unsaturated zone and thus raises the water 

table conserving a capillary fringe. In this condition TRIGRS uses four 

parameters (residual water content θr, saturated water content θs, inverse 

height of capillary fringe α, and KS) to approximate the soil-water 

characteristic curve (SWCC) as suggested by Gardner (1958), and thus 

approximates the infiltration flux as one-dimensional (Srivastava and Yeh, 

1991). The vertical pressure head changes in the unsaturated zone are 

obtained from the following equation: 

 

𝜓(𝑍, 𝑡) =
cos 𝛿

𝛼1
ln [

𝐾(𝑍,𝑡)

𝐾𝑆
] + 𝜓0   (16) 

 

where 𝛼1 = 𝛼 𝑐𝑜𝑠2 𝛿0 is the pressure head at the water table (Ψ0 = 0) or at the 

top of the capillary fringe (Ψ0 = -1/α), K(Z,t) is the time and depth dependent 

hydraulic conductivity in the unsaturated zone given by the solution of 

Srivastava and Yeh (1991) and implemented in Baum et al. (2008) (later 

corrected in Baum and Godt (2013)). K(Z,t) is computed with the ensuing 

formula: 
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𝐾(𝑍, 𝑡) = ∑ 𝐻(𝑡 − 𝑡𝑛) {𝐼𝑛𝑍 − (𝐼𝑛𝑍 − 𝐾𝑆) exp[−𝛼1(𝑑𝑢 − 𝑍)] −𝑁
𝑛=1

4(𝐼𝑛𝑍 − 𝐼𝑍𝐿𝑇) exp (
𝛼1𝑍

2
) exp [−𝐷Ψ

(𝑡−𝑡𝑛)

4
] ∙

∑
sin[Λ𝑚𝛼1(𝑑𝑢−𝑍)] sin(Λ𝑚𝛼1𝑑𝑢)

1+
𝛼1𝑑𝑢

2
+2Λ𝑚

2 𝛼1𝑑𝑢

∞
𝑚=1 exp[−Λ𝑚

2 𝐷Ψ(𝑡 − 𝑡𝑛)]} − ∑ 𝐻(𝑡 −𝑁
𝑛=1

𝑡𝑛+1) {𝐼𝑛𝑍 − (𝐼𝑛𝑍 − 𝐾𝑆) exp[−𝛼1(𝑑𝑢 − 𝑍)] − 4(𝐼𝑛𝑍 −

𝐼𝑍𝐿𝑇) exp (
𝛼1𝑍

2
) exp [−𝐷Ψ

(𝑡−𝑡𝑛+1)

4
] ∙

∑
sin[Λ𝑚𝛼1(𝑑𝑢−𝑍)] sin(Λ𝑚𝛼1𝑑𝑢)

1+
𝛼1𝑑𝑢

2
+2Λ𝑚

2 𝛼1𝑑𝑢

∞
𝑚=1 exp[−Λ𝑚

2 𝐷Ψ(𝑡 − 𝑡𝑛+1)]}  (17) 

 

in which du  is the vertical depth of the top of the capillary fringe, DΨ is the 

decay constant, and the values of  Λm are the positive roots of a pseudo-

periodic characteristic equation. 

Below the initial top of the saturated zone and for finite depth basal boundary, 

TRIGRS computes the pressure head rise using a formula based on a Fourier 

series solution: 

 

Ψ(𝑍𝑊, 𝑡) = ∑ Ψℎ𝑛𝐻(𝑡 − 𝑡𝑛) {1 −𝑁
𝑛=1

4

𝜋
∑ (−1)𝑚−1 1

2𝑚−1
exp [−

(2𝑚−1)2𝜋2𝐷1(𝑡−𝑡𝑛)

4𝑑𝐿𝑍
2 ]∞

𝑚=1 cos [
𝜋

2
(2𝑚 − 1) (

𝑍𝑊

𝑑𝐿𝑍
−

1)]} − ∑ Ψℎ𝑛𝐻(𝑡 − 𝑡𝑛+1) {1 −𝑁
𝑛=1

4

𝜋
∑ (−1)𝑚−1 1

2𝑚−1
exp [−

(2𝑚−1)2𝜋2𝐷1(𝑡−𝑡𝑛+1)

4𝑑𝐿𝑍
2 ]∞

𝑚=1 cos [
𝜋

2
(2𝑚 − 1) (

𝑍𝑊

𝑑𝐿𝑍
−

1)]}           (18) 

 

where 𝑍𝑊 = 𝑍 − 𝑑 is the vertical depth below the initial water table, 𝛹ℎ𝑛 =
𝛽ℎ𝑛 is the pressure head applied after the accumulation of water above the 

initial water table, dLZw is the vertical height of the saturated layer. For the 

very early times, formulas based on Fourier series converge poorly so other 

approximations have been used (Baum et al., 2008, 2010). 

 

To determine the stability of a slope, TRIGRS computes the factor of safety 

(FS) using a one‐dimensional infinite-slope stability analysis (Taylor, 1948). 
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FS is defined as the ratio between the resisting and the driving forces acting 

on a point along the potential failure plane. The resisting force is the Coulomb 

shear strength of the soils, a combination of gravity, pore pressure and 

material properties. The driving force is the shear stress, the slope parallel 

component of gravity. The equation of FS is:  

 

𝐹𝑆(𝑍, 𝑡) =
tan 𝜙′

tan 𝛿
+

𝑐 ′−𝜓(𝑍,𝑡)𝛾𝑊(tan 𝜙)′

𝛾𝑆𝑍 sin 𝛿 cos 𝛿
  (19) 

 

where ϕ′ is the soil friction angle for effective stress, c′ is soil cohesion for 

effective stress, γw is unit weight of water, and γs is unit weight of soil. ψ(Z,t) 

is the transient pressure head at depth Z and time t, obtained from either 

equation (15), (16) or (18) depending on the particular conditions modeled. 

In the unsaturated zone, TRIGRS computes the factor of safety above the 

water table, multiplying the matric suction 𝜓(𝑍, 𝑡)𝛾𝑊 by 𝜒 = ((𝜃 −
𝜃_𝑟 ))/((𝜃_𝑠 − 𝜃_𝑟 ) as suggested by Vanapalli and Fredlund (2000). 

When the shear strength is greater than the shear stress (FS>1), the slope is 

predicted to be stable. When the shear stress is greater than the shear strength 

(FS<1), the slope is predicted to be unstable. FS=1 is a state of equilibrium, 

but inherently unstable. 

 

 

4.3.2 Methodology 

 

TRIGRS is applied here in the post-orogenic complex of the Esino river 

catchment, which is about 550km2 wide, combined with a Geographic 

Information System (GIS). 

 

The first part of this method consisted in the improvement of the available 

data. 

Hydrogeological, topographic (20m Digital Elevation Model), landslides and 

rainfall data for this spatial analysis were obtained from government agencies 

as described before (Chapter 4.1). Usually, shallow landslides are 

characterized by small thickness, up to 2-3m (Caine, 1980; Crosta and 

Frattini, 2003). From observational data registered in the field and from 

reports received by the Marche CFR, an average depth of failure of 1m is 

reasonably assumed. This depth represents the eluvio-colluvium layer 

composed of weathered material typical of the clayey Plio-Pleistocene marine 

deposits (Bisci and Dramis, 1991). 
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The model requires accurate information on location and timing of the 

failures. For this reason, from the original database, the events with uncertain 

date of activation and those related to engineering failures were no longer 

considered.  

The landslides were then associated with one of the local mechanical (MR) 

or telemetric (TR) rain gauges distributed in the study area or in the proximity.  

Afterwards, each landslide locations was assigned to a hydrogeological map 

unit, using a map provided by the National Research Council (Folchi Vici 

D’Arcevia et al., 2008), and to a land use class, according to the European 

Corine Land Cover - CLC 2000 (unpublished data, 2002) database, available 

from the European Environmental Agency (http://www.eea.europa.eu/). A 

soil texture class was identified for every hydrogeological unit assigned to the 

landslides of the study area.  

In large regions such as the study area, local and detailed data on soil 

properties and thickness are difficult to obtain. To overcome this limitation 

an innovative approach has been proposed. The values of the soil physical 

parameters, required as input for the TRIGRS program, has been gathered 

from literature review of works related to soil texture classes matching the 

study area ones. These parameters are: 

a) cohesion c [kPa], which is a measure of the forces that cement 

particles of soils; is the non-frictional part of the shear strength that 

is independent of the normal stress; 

b) angle of internal friction φ [deg], which is the angle of inclination, 

measured between the normal and the resultant force, that is attained 

when failure occurs in response to a shearing stress; it is a measure 

of the ability of a unit of rock or soil to withstand a shear stress; 

c) unit weight of soil γs [kN/m3], which is the specific weight of the 

material per unit volume; 

d) saturated hydraulic conductivity KS [m/s], which is a measure of the 

soil's ability to conduct water when is submitted to a hydraulic 

gradient; at saturated conditions is a constant value for any given time 

and location within the soil body. 

e) hydraulic diffusivity D0 [m
2/s], which is the ratio between saturated 

hydraulic conductivity and specific storage (water capacity); it 

controls the fluid pressure and hence affects the effective normal 

stress during a rupture; 

f) residual water content θr [-], which is defined as the ratio of the 

volume of water retained in the soil, after all downward gravity 

drainage has ceased, to the total volume of the sample; 
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g) saturated water content θs [-], which is the soil water content when 

all pores are filled with water and is equivalent to porosity; 

h) inverse height of capillary fringe α [1/m], which represents the 

desaturation rate of the soil water and is related to pore size 

distribution; it is smaller for finer-textured soils.  

Among the physical parameters collected, the best sources considering 

proximity, data availability, and soil characteristics were chosen for every 

texture class. The arithmetic mean was derived when the references cited a 

large range of values. Descriptive statistics, such as the smallest observation 

(sample minimum), lower quartile (q1), median, upper quartile (q3), and 

largest observation (sample maximum), has been computed for each set of 

parameters. These limit values has been used alternately in the model for its 

calibration. 

 

The second part of the analysis involved the examination of the model’s 

sensitivity to the inputs. The intention was to assess the performance of 

TRIGRS, calibrated to produce failure, over: (i) timing of the highest pressure 

head with time of landslide occurrence, and (ii) pore pressure fluctuation in 

response to rainfall in the different texture classes. These objectives have been 

achieved by computing the pressure head variation for a single 1-D profile 

over a range of hydrological property values typical of the soil texture classes 

previously identified in the Esino river basin area, namely clay, sandy-clay 

and loam.  

The analysis required as input the slope characteristics and the mechanical 

and hydrogeological properties of the material involved. Once these 

parameters values were selected, fifteen model runs on a 1-D profile were 

carried out. 

TRIGRS was tested in the opposite cases of saturated condition with infinite 

depth of the basal boundary (SAT-INF) and unsaturated condition with finite 

depth of the basal boundary (UNS-FIN). The permeability contrast depth, 

used in the finite case, was 1m; as described before, this depth was also 

assumed the average depth of landslide failure. The model was calibrated with 

representative input values that yield a change in pore-water pressure that 

reduced the safety factors to one during the simulation. Some input 

parameters were the same for each test while others were varied. 

The storms chosen for the study were picked among those that triggered, in 

the study area, the largest number of landslides during the past years (1990-

2012). The reason of this choice is to analyze the sensitivity of the program 

to different intensity-duration ratios. The rainfall data concerning these 
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storms are referred to the rain gauges (MR) with the most number of 

landslides correlated.  

Among the model runs, those with the best results were selected to compare 

behaviors of different materials and pressure head responses during the 

storms selected. The best results of the model runs were identified as the tests 

in which the 1-D profile was stable (FS > 1) at the beginning and unstable (FS 

≤ 1) at the end of the storm. 

Moreover, three parameters were used to examine and compare the different 

responses of the model to the change in the saturated hydraulic properties: (1) 

saturated hydraulic conductivity (KS), (2) saturated hydraulic diffusivity (D0), 

and (3) initial depth of the water table (d). Values for these three input 

variables were varied in the model runs considering saturated and unsaturated 

conditions for all the above-mentioned soils and storms. 

 

The third part of the research consisted in the application of TRIGRS to the 

entire study area. TRIGRS was uses for historical storm scenarios to compare 

model results against the landslide database. 

First, every landslide point location was related to a corresponding polygon 

of the IFFI database (APAT - Dipartimento Difesa del Suolo, 2007) or to a 

buffer area whose width depended on the information available of the failure. 

This was done because the physical model requires the specific surface of the 

landslides to compare the stable with the unstable areas. 

The best performing hydrological and mechanical property values, assessed 

through the calibration (see part 2), represent a portion of the inputs for the 

application of TRIGRS to the post-orogenic complex. Moreover, for this 2-D 

profile have been provided: (i) the initial water table positions; (ii) the spatial 

distribution of topographic slope; (iii) the time-varying rainfall intensities; 

(iv) the antecedent soil moisture conditions; (v) the spatial distribution of soil 

depths.  

The initial water table depth was considered as assumed during the calibration 

phase. 

The slope was derived from a 20m Digital Elevation Model (DEM), which 

was also used to divide the study area into a grid of 1376590 cells sized 20m 

x 20m.  

Because of the large number of cells and consequently of data, the hourly 

precipitation was grouped into intervals with similar rainfall intensity. The 

mean rainfall has been computed for every interval and those values has been 

used as input for the model. Therefore, the number of computational steps 

and the total running time of each simulation decreased. 
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For the deduction of the soil moisture conditions at the beginning of the 

storms, the Antecedent Water Index (AWI) was calculated according to Godt 

et al. (2006). The AWI is zero at the field capacity, defined as the moisture 

content above which water freely drains from the soil, negative below and 

positive above (Godt et al. 2006). The field capacity was evaluated through a 

range of values effective for every texture class: (a) 0.27m for clay (Brady, 

1990); 0.13m for sandy-clay (Godt et al., 2006a); 0.26m for loam (Brady, 

1990). These values represent the amount of rainfall (in m) needed to reach 

the field capacity starting from wilting conditions. Thus, the AWI was 

computed for every rainfall event, since the beginning of the meteorological 

season or the beginning of consistent rainfall, which was considered as the 

wilting condition. If the AWI was approximately equal or greater than zero at 

the beginning of the days of landslides initiation, TRIGRS was run in the form 

of saturated initial conditions. If the AWI was less than zero for one or more 

texture classes, TRIGRS was run with unsaturated initial conditions. 

The soil depth (Z) was assessed assuming its negative correlation with the 

profile slope angle, so that the depth decreases with the increase of the slope 

(DeRose et al., 1991). Based on the strength property values (friction angle, 

cohesion and unit weight of soil) gathered from the literature review and 

calibrated in the above described tests, the critical soil depth for FS = 1.0 was 

calculated. Namely, the inverse form of equation (19) has been used in every 

texture class, assuming the water table at the ground surface, to compute Z 

for every slope values from the minimum to the maximum in the study area. 

The power law regression (𝑦 = 𝑎 × 𝑥−𝑏) derived from these computed data, 

represents the maximum acceptable soil thickness of a slope to become 

potentially unstable. We considered the power law for the model, because the 

data regression coefficient (R2) is higher than in the exponential equation 

applied by DeRose (1991). 

After collecting and computing all the required inputs, TRIGRS was run to 

provide estimates of the FS distribution across the study area. As initial 

conditions, for this simulation we used saturated (SAT) or unsaturated (UNS) 

settings, depending on the AWI, with a basal boundary at 1m of depth (FIN). 

Furthermore, the receiver operating characteristics (ROC) technique was used 

to assess the performance of the model as landslide predictor for the study 

area. The ROC chart illustrates the outputs of classification models where the 

response variable is binary; in this case, the states are either “unstable” or 

“stable”. To perform the ROC analysis, the cells with FS ≤ 1.0 were 

considered unstable, whereas the cells with FS > 1.0 were considered stable.  

There are four possible outcomes from a binary classifier that can be 

formulated in a two-by-two contingency table (or confusion matrix) (Fawcett, 
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2006). If a grid cell is modeled unstable and corresponds to a mapped 

landslide, it is considered a “true positive” (TP); otherwise, if no landslide is 

recorded, the cell is considered a “false positive” (FP). If the grid cell is 

modeled stable and does not match a mapped landslide, it is considered a “true 

negative” (TN); otherwise, if it fits a slope failure, the cell is considered a 

“false negative” (FN). The ROC curve is created by plotting the “true positive 

rate” (TPR) vs. the “false positive rate” (FPR). The TPR (or sensitivity) is the 

fraction of TP out of the sum TP+FN that represents the total number of 

landslide cells. The FPR (or fall-out) is the fraction of FP out of the sum 

FP+TN that represents the total number of non-landslide cells. In a ROC 

graph the origin point (0, 0) represents a classification model which commits 

no FP errors but also gains no TP. On the contrary, a classifier which 

unconditionally predicts the entire area to be unstable would be located at 

point (1,1). The perfect outcome of a model is represented by the upper left 

corner (0,1). The closer is a prediction to the point (0,1), the better is the 

performance of the model. A result that falls along the diagonal is considered 

random. 

Finally, the ROC curves were plotted to evaluate the model outcomes by 

varying the range of FS values considered unstable. In the first setting, the 

cells with FS ≤ 0.8 were supposed unstable and those with FS > 0.8 were 

supposed stable. In the second scenery, the instability limit was at FS ≤ 0.9, 

and so forth up to the value of 2.0. Acceptable prediction are results of the 

classification falling in the upper left quadrant of the graph, namely the 

outputs with TPR > 0.5 and FPR < 0.5. These ranges represent the conditions 

that maximized the sensitivity and minimized the fall-out of the TRIGRS 

runs.  

 

Interpretation of the model’s output in a probabilistic framework accounts for 

uncertainties in the material properties and rainfall distribution as well as 

temporal changes in topography or subsurface conditions that are not 

represented in the available geographical datasets. 

 

 

4.3.3 Results 

 

The first part consisted initially in the cataloging of landslides with certain 

timing and location. The remaining number of landslides (82) after the above 

edits belongs to 25 different rainstorm events (Table 9) from November 1991 

to February 2011. 
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Storm Starting date Ending date Duration 

(h) 

Event 

rainfall 

(mm) 

Intensity 

(mm/h) 

Landslides 

Nov-91 11/23/1991 11/25/1991 72 66.7 15.6 3 

Oct-92 10/20/1992 10/21/1992 48 42.0 6.0 1 

Jan-94 01/20/1994 01/21/1994 48 71.4 17.2 7 

Jul-94 07/20/1994 07/21/1994 48 62.4 30.2 1 

Sep-95 09/08/1995 09/08/1995 24 24.6 11.6 1 

Mar-96 03/16/1996 03/17/1996 48 16.2 3.2 1 

Apr-96 04/02/1996 04/05/1996 96 55.2 15.6 1 

Oct-96 10/07/1996 10/09/1996 72 97.6 16.4 7 

Dec-96 12/24/1996 01/05/1997 312 125.9 9.0 11 

Nov-98 11/30/1998 12/05/1998 144 120.9 9.4 18 

Dec-98 12/12/1998 12/12/1998 24 1.2 0.4 2 

Dec-99 12/15/1999 12/16/1999 48 76.6 6.4 1 

Jan-01 01/28/2001 02/01/2001 120 74.8 10.2 2 

Feb-04 02/24/2004 03/02/2004 192 48.9 4.2 2 

May-05 05/17/2005 05/19/2005 72 28.2 7.6 1 

Oct-05 10/06/2005 10/09/2005 96 80.4 27.8 5 

Dec-05 12/31/2005 01/03/2006 96 49.4 8.0 2 

May-08 05/18/2008 05/22/2008 120 70.2 32.2 1 

Sep-08 09/12/2008 09/16/2008 120 61.4 37.4 1 

May-09 05/31/2009 06/02/2009 72 13.0 1.6 1 

Dec-09 12/31/2009 01/06/2010 168 48.0 2.8 1 

Mar-10 03/09/2010 03/11/2010 72 36.5 3.6 2 

May-10 05/11/2010 05/16/2010 144 67.0 5.4 1 

Nov-10 11/30/2010 12/03/2010 96 49.4 4.4 2 

Feb-11 02/27/2011 03/6/2011 192 137.0 13.6 7 

Median   96 61.4 9.0  

Table 9 Storms that triggered one or more landslides during the period 1990-2012. The table shows 

the starting and ending date of the storms, the storm duration in hours (maximum value of all rain 

gauges), the storm event rainfall (mean of all rain gauges data), the peak hourly rainfall (maximum 

value of all rain gauges) and the number of landslides triggered during the storm. Median values of the 

storms are shown at the bottom of the table. 

 

The values of storm duration vary from 24 h to 312 h, with a median of 96 h. 

The average total rainfall in the rainstorms ranges between 1.2 mm (distance 
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from nearest gauge is 4 km) and 135 mm (distance from nearest gauge is 3.7 

km) with a mean of 91.6 mm, a median of 61.4 mm and a standard deviation 

of about 41 mm. The maximum intensities, ranging from 0.4 mm/h to 37.4 

mm/h, registered a median value of 9 mm/h. The rainfall events triggered 

from one to 18 landslides. The correlation coefficient (r), computed with the 

equation (11), shows divergent results. The value of r for the landslide and 

intensity series is 0.02, for the landslide and duration series is 0.44, for the 

landslide and event rainfall series is 0.72. 

 

Almost all the landslides are located in clay (44) or sandstone (29) materials 

(Table 10), in areas where the land use is generally agricultural. Other failures 

initiated in alluvium (5), limestone (3), and colluvium (1) hydrogeological 

classes. The soil texture categories appointed to every hydrogeological unit 

were clay, sandy-clay, loam, and gravel (Table 10).  

 

Hydrogeological Classes Landslides Texture 

Alluvium 5 Loam 

Chalk 0 - 

Clay 44 Clay 

Colluvium 1 Loam 

Limestone 3 Gravel 

Marl 0 - 

Sandstone 29 Sandy-Clay 

Table 10. Soils and frequency of landslides in the study area. The right column represents the soil 

texture class associated to the hydrogeological units in which at least one landslide was initiated. 

The physical parameters values, collected from published works and referred 

to every texture class, are listed in Table 11. Statistics of the best matching 

sources for every texture class was computed. Figure 44 shows the ranges and 

the central tendencies of all the physical properties thus considered, 

summarized for each soil texture class. 
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c (kPa) φ (deg) ϒS (kN m3) 
D0 (m

2 

s1) 
KS (m s-1) θr (-) θs (-) 

α (m-

1) 
Reference 

Clay 

    
1.16 - 

6.94·10-6 
   

(Cascini et al., 

2010) 

     0.17 0.35  
(Cassinis et al., 

1985) 

0 – 5 10 – 20 20 
10-8 - 10-

7 
10-9 - 10-7    

(Cervi et al., 

2010) 

100 15 – 21    0.10 0.50  
(Cotecchia, 

2006) 

10 15 – 30  10-5     
(Montrasio et 

al., 2011) 

4 18  5.0·10-6 10-7 0.07 0.80 5 
(Raia et al., 

2014) 

5 – 10 18 – 22 19 – 19.6      
(Salciarini et al., 

2006) 

20 – 80 26 – 34 19.6 – 22  10-8    
(Salciarini et al., 

2006) 

0 20   10-8-10-7    
(Simoni et al., 

2004) 

         

Sandy-clay 

0.5 32 
19.1 – 

19.7 
 10-6   2 

(Casagli et al., 

2006) 

0 – 10 15 – 25 20 10-8-10-7 10-7 - 10-5    
(Cervi et al., 

2010) 

0 12.4 17.09    0.37  
(Crescenti et al., 

2000) 

0 30 – 35  10-5     
(Montrasio et 

al., 2011) 

3 31  3.8·10-4 10-4 0.05 0.20 2 
(Raia et al., 

2014) 

         

Loam 

0 18 – 35 18.4 – 19  1.3·10-6   2.5 
(Casagli et al., 

2006) 

0 – 10 25 – 35 24 10-8-10-7 10-7 - 10-4    
(Cervi et al., 

2010) 

4.5 13.5 19.07    0.33  
(Crescenti et al., 

2000) 

2.9 32.5 14.9 – 19  10-7   1 
(Dapporto et al., 

2001) 

0 30 – 32 20      
(Luzi and 

Pergalani, 1996) 

3 15  4.7·10-3 10-4 0.10 0.50 1 
(Raia et al., 

2014) 
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0 33 19.6  
0.5 - 

6.0·10-6 
 0.45  

(Rinaldi and 

Casagli, 1999) 

2 – 7 33 – 35 
16.1 – 

19.3 
 1.1·10-6 0.15 0.35 2.5 

(Rinaldi et al., 

2004) 

0 – 10 24 – 34 18 – 19.5  10-5 - 10-2    
(Salciarini et al., 

2006) 

0 35 19  8·10-6 0.28 0.45  
(Tofani et al., 

2006) 

         

Gravel 

  16 – 24.9  
1.5·10-7 - 

3.5·10-5 
  10 

(Cascini et al., 

2006) 

29.5 14.7 18.82    0.35  
(Crescenti et al., 

2000) 

2 - 3 34 – 45 17 – 19 2·10-4 
5·10-5 - 

2·10-4 
   

(Crosta and 

Frattini, 2003) 

20 – 50 34 – 36 22      
(Luzi and 

Pergalani, 1996) 

15 30  4.0·10-4 10-4 0.10 0.45 5 
(Raia et al., 

2014) 

Table 11. Overview of soil physical parameters values required: c, cohesion; φ, angle of internal 

friction; γs, unit weight of soil; D0, hydraulic diffusivity; Ks, saturated hydraulic conductivity; θr, 

residual water content; θs, saturated water content; α, inverse height of capillary fringe 
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Figure 44 Box plot charts of cohesion (a), angle of internal friction (b), unit weight of soil (c), hydraulic 

diffusivity (d), saturated hydraulic conductivity (e), residual water content (f), saturated water content 

(g), inverse height of capillary fringe (h) per each soil texture class. Lower extreme, lower quartile, 

median (red line), upper quartile and upper extreme values are shown. 
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The box plots in Figure 44 highlight the trend and the variability of the 

physical property values selected from the literature review. The wider are 

the segments (“whiskers”), the higher is the data variability. The parameters 

with the maximum spread are the angle of internal friction, the hydraulic 

diffusivity, and the saturated hydraulic conductivity. Furthermore, the 

cohesion of clay, the soil unit weight of loam, the residual water content of 

loam, and the saturated water content of clay displays a large variability too. 

On the contrary, when simply the median is represented it means that only 

one value or more values with the same measure were collected. 

The only value of alpha parameter in clay material found in the literature 

research, is anomalously high (α = 5) for the texture considered, and resulted 

in non-convergence of the Fourier series’ solutions when tested. For this 

reason, the next tests are executed using a generic value of α = 1 (Table 12). 

The gravel texture class was not considered in Figure 44 and further, because 

only three landslides were triggered within it and few data were available, 

compared with the other soils. 

 

The storms chosen as input for the calibration are: October 7th – 10th 1996 

(October 1996) that triggered 7 landslides and November 30th – December 

5th 1998 (November 1998) that triggered 18 landslides. The rain gauges 

considered were Jesi and Montecarotto (Figure 45). In fact, these storms were 

representative of two different intensity - duration events; the first one was 

shorter (72 h) than the second (120 h), but more intense (16.4 mm/h vs 9.4 

mm/h). On the other hand, the total rainfall was similar and equal to 105.8 

mm in the 1996 occurrence and 138.2 mm in the 1998 one.  
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Figure 45 Post-orogenic sediments of the Esino river basin divided by hydrogeological units (a) and 

texture classes (b). The circles represent the rain gauge stations while the diamonds the georeferenced 

landslides 
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The calibration aimed at the selection of the physical parameters that yielded 

the best results of the model runs. Particularly, the choice referred to results 

of parameterization on: 

- clayey soil landslides, with slope equal to the value of the 95th 

percentile of the slopes that were recorded on clayey landslides, initial 

depth of the water table equal to 0.5 m, cohesion equal to the first 

quartile of the related data collected from the literature, friction angle 

equal to the minimum value found, inverse of capillary fringe height 

equal to 1 and median values for the other mechanical and 

hydrogeological properties (e.g. sat. hyd. conductivity) (Table 12); 

- sandy-clayey soil landslides, with slope equal to the value of the 95th 

percentile of the slopes that were recorded on sandy-clayey landslides, 

initial depth of the water table equal to 1 m, cohesion equal to the first 

quartile of the related data collected from the literature, third quartile 

for the diffusivity and median values for the other mechanical and 

hydrogeological properties (Table 12); 

- loamy soil landslides, with slope equal to the value of the 95th 

percentile of the slopes that were recorded on loamy landslides, initial 

depth of the water table equal to 1 m, cohesion and friction angle equal 

to the first quartile of the related data collected from the literature and 

median values for the other mechanical and hydrogeological 

properties (Table 12). 

 

Figure 46 and Figure 47 shows the comparison of TRIGRS’s output, run with 

the input values in Table 12 while changing the saturated hydraulic properties 

(Ks-D0-d). 

In these figures, each column represents the trend of pressure head at 1 m of 

depth, for a specific soil texture, throughout the storm. The upper graphs 

(from (a) to (f)) illustrate the differences in pressure head response when the 

saturated hydraulic conductivity equals the first quartile, the median, or the 

third quartile of the values collected, respectively. In the third and fourth rows 

of charts (from (g) to (l)), the pressure head was computed for a changing 

saturated hydraulic diffusivity (first quartile, median and third quartile). The 

fifth and sixth rows of graphs (from (m) to (r)) show the differences in 

pressure head when the initial depth of the water table is 1 m, 0.5 m or 0 m. 

The first, third and fifth rows are the output of the infiltration model for 

saturated conditions and an infinitely deep basal boundary (SAT-INF). The 

second, fourth and sixth rows show the pressure head variations of the 

infiltration model for unsaturated soils and impermeable basal boundary at a 

finite depth of 1 m (UNS-FIN). The red lines in the plots represent the 
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minimum pressure head for landslide initiation (FS = 1) computed with the 

property values indicated in Table 12. Cumulative and hourly rainfall for both 

the October 1996 (Figure 46) and the November 1998 (Figure 47) storms are 

plotted in the bottom graphs (from (s) to (u)). 

 

No. 
Slope 

(º) 

Depth 

(m) 

c 

(kPa) 

φ 

(deg) 

γs 

(kN 

m-3) 

D0 

(m2 s-1) 

Ks 

(m s-1) 

θr 

(-) 

θs 

(-) 

α 

(m-1) 

1 

21.4 

(95th 

perc.) 

0.5 
4 

(q1) 

15 

(min) 

19.6 

(med) 

5.00·10-

6 

(med) 

7.75·10-

8 

(med) 

0.10 

(med) 

0.50 

(med) 
1 

2 

28.2 

(95th 

perc.) 

1 
0 

(q1) 

31 

(med) 

19.4 

(med) 

1.03·10-

4 

(q3) 

5.05·10-

6 

(med) 

0.05 

(med) 

0.29 

(med) 

2 

(med) 

3 

12.7 

(95th 

perc.) 

1 
0 

(q1) 

23.25 

(q1) 

18.9 

(med) 

8.33·10-

5 

(med) 

5.63·10-

6 

(med) 

0.15 

(med) 

0.45 

(med) 

1.8 

(med) 

Table 12. Soil types and properties used as settings for the tests in clay (1), sandy-clay (2) and loam 

(3) texture classes 
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Figure 46 TRIGRS outputs for KS-D0-d variation tests. Graphs (a), (d), (g), (j), (m), (p) show the 

pressure head responses in clayey soils, graphs (b), (e), (h), (k), (n), (q) show the pressure head 

responses in sandy-clayey soils, and graphs (c), (f), (i), (l), (o), (r) show the pressure head responses 

in loamy soils during the October 1996 storm ((s), (t), (u)). The red lines indicate the threshold pressure 

head for landslide initiation (FS ≤ 1). Highlighted is the period of landslide activity 
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Figure 47 TRIGRS outputs for KS-D0-d variation tests. Graphs (a), (d), (g), (j), (m), (p) show the 

pressure head responses in clayey soils, graphs (b), (e), (h), (k), (n), (q) show the pressure head 

responses in sandy-clayey soils, and graphs (c), (f), (i), (l), (o), (r) show the pressure head responses 

in loamy soils during the November 1998 storm ((s), (t), (u)). The red lines indicate the threshold 

pressure head for landslide initiation (FS ≤ 1). Highlighted is the period of landslide activity 
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In general, pressure head increases in response to rainfall and peaks at values 

sometimes considerably minor than the expected ones. The initial pressure 

head response of the finite depth models is always less sudden than response 

of the infinite depth models. Among the three texture classes, for hydraulic 

conductivity and diffusivity that vary over the ranges defined in Table 13, and 

for both the storms, the pressure head increase is the smallest in clay, larger 

in sandy-clay and largest in loam. For SAT-INF conditions in sandy-clay and 

loam, the pressure head drops rapidly when the rainfall stops and even when 

the rainfall intensity decreases to less than 5 x 10-7 m/s. In fact, in this last 

case, the conductivity is up to 10000 times higher than the rainfall flux. For 

UNS-FIN conditions, the pressure head declines gradually following long 

periods of no rainfall. This is evident for the November 1998 storm, where 

the UNS-FIN pressure head decreases only during a period of drier conditions 

with 4.6 mm of rainfall distributed in 51 hours. Also, the reduction occurs 

about 12 h after the SAT-INF settings. In the clay texture class, the pressure 

head never decreases, even during the November 1998 maximum duration of 

low-to-null rainfall considered in these models.  

 

Parameters Clay Sandy-clay Loam 

KS [m/s] 

5.16· 

10-8 

(q1) 

7.75· 

10-8 

(med) 

3.06· 

10-6 

(q3) 

3.03· 

10-6 

(q1) 

5.05· 

10-6 

(med) 

5.25· 

10-5 

(q3) 

1.25· 

10-6 

(q1) 

5.63· 

10-6 

(med) 

6.25· 

10-5 

(q3) 

D0 [m2/s] 

2.53· 

10-6 

(q1) 

5.00· 

10-6 

(med) 

7.50· 

10-6 

(q3) 

2.48· 

10-7 

(q1) 

5.16· 

10-6 

(med) 

1.03· 

10-4 

(q3) 

1.20· 

10-6 

(q1) 

8.33· 

10-5 

(med) 

1.30· 

10-3 

(q3) 

d [m] 1 0.5 0 1 0.5 0 1 0.5 0 

Table 13. Values of saturated hydraulic properties varied in the model runs 

 

Moreover, changes in the saturated hydraulic diffusivity do not cause 

dissimilar variation of pressure head in the UNS-FIN computations, except in 

the clayey soils.  

 

Furthermore, in every texture class the pressure head increases more in lower 

conductivity and higher diffusivity conditions. That said, it is important to 

highlight that a factor of 100 difference in saturated hydraulic conductivity 

for clay soils has smaller effect on pressure head (0.2 m of fluctuation) than 

a factor of 10 difference in sandy-clay or loamy soils (0.8 m up to 1 m of 

fluctuation) (Table 13). On the contrary, a factor of 1000 difference in the 
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sandy-clay and loam saturated hydraulic diffusivity increased the pressure 

head of 0.6 m and almost 1m respectively, but a maximum factor of 3 

difference in clay (between the lowest and highest values of diffusivity) 

resulted in changing the pressure head up to 0.3 m.  

In addition, the pressure head changes its values but not its trends when the 

initial depth of the water table is modified from 1 m to 0.5 m or vice versa. 

On the other hand, the pressure head is steady over time, when the initial 

depth of the water table is equal to 0 m (ground surface). 

Finally, the two case studies show different pressure head responses due to 

the rainfall conditions. The October 1996 storm presented several periods of 

short duration (less than 20 h) with high intensity rainfall (maximum of 16.4 

mm/h) and a shorter total duration (72 h) than the November 1998 storm (120 

h). This last event displayed a rather long duration with low intensity rainfall 

at the beginning (almost 40 h) followed by an equally long dry period and in 

the end moderate intensity rainfall (maximum of 9.4 mm/h). At the beginning, 

during the first period of continuous rainfall, the pressure head in every plot 

of the October 1996 storm increases less sharply than in the November 1998 

and reaches values consistently inferior (about 0.2 m lower) to those of the 

other storm, also because the duration is less than half of the November 1998 

storm. Although drainage occurs during the dry periods, pressure head does 

not fall back to its initial value. After the long dry period of the 1998 storm, 

the pressure head of the sandy-clayey and loamy soils decreases, especially 

within infinite depth simulations, enough to almost match the 1996 values, so 

that after the last rainfall period they have comparable values. On the other 

hand, as previously mentioned, the pressure head of the clayey soil does not 

decrease so that in the end in the 1998 storm it is generally higher than in the 

1996 one.  

Landslide response of the storms also differs. During the 1996 storm, 3 

landslides were related to the rain gauge of Jesi, 2 in clay and 1 in loam 

(Figure 46); during the 1998 event 6 landslides were associated to the rain 

gauge of Montecarotto, 5 in sandy-clay and 1 in clay (Figure 47). Most of 

them (7) were triggered the second day of rainfall, generally after the 

increasing of pressure head above the marked threshold (FS ≤ 1).  

Figure 48 summarizes the different responses of the soils to the two storms in 

terms of landslide initiation. Graph shows in the y-axes the pressure head rise 

as the ratio between the peak and the initial pressure head, while the x-axes 

represents a measure of the storm rainfall uniformity as the ratio between the 

average and the peak intensity. The pressure head rise is computed as the 

maximum change in pressure head with the preferred model inputs (Table 12) 

from the beginning of the storm until the end of the time-window for landslide 
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occurrence. The intensity ratio is suggested to characterize the storm rainfall. 

It tends to one when the rainfall becomes steady. Figure 48 illustrates that 

during both the rainfall scenarios the clay soil has the lowest pressure head 

rise, compared to sandy-clay and loam. The chart highlights also that the 

pressure head total variation is higher, in addition to the delay of about 12 h 

(Figure 46 and Figure 47), in UNS-FIN conditions compared to SAT-INF 

settings. 

 

 

Figure 48 Summary of the soil responses to the October 1996 and November 1998 scenarios (SAT-INF 

and UNS-FIN). 

 

In the third part of the analysis, the time-varying mean rainfall intensities of 

every storm has been computed and used as input for the model. Figure 49 

shows the example for the October 1996 event in which the total duration has 

been divided in 5 intervals. The second and the forth periods are characterized 

by higher intensities, thus greater averages. With this method, it was possible 

to reduce the number of rainfall intensities in input but still considering their 

fluctuations.  

Moreover, Figure 50 illustrates an example of the AWI trends for the rainfall 

event of October 1996. All the texture classes reached values greater than or 

equal to zero (field capacity) during the days of landslides (October 8th-9th). 

Therefore, the soil was considered saturated in the initial condition of the 

analysis. 
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Figure 49 Rainfall intervals identified for the October 1996 event (I to V). Histograms show the hourly 

rainfall while the horizontal lines represent the mean rainfall of every time step. 

 

Figure 50 AWI trend for the period August 1st – October 31st 1996.  

Additionally, the power law regression used to derive the critical soil 

thickness of a defined slope is displayed in Figure 51. The R2 for every texture 

class is very high. However, for slopes below 9°, the curves reach values of 
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soil thickness too elevated for the study area. Therefore, the maximum value 

of soil depth is considered as the one resulting at slope=9°. 

 

Figure 52 shows the spatial and the temporal variation of the FS values during 

the October 1996 rainfall event. Moreover, the number of cells stable (FS ≥ 

1.3), unstable (FS ≤ 1.0) or with uncertain stability (FS = 1.0 – 1.3) and the 

trends over time is displayed in Figure 53. As initial conditions, for this 

simulation saturated settings (equation (13)) with a basal boundary at 1m of 

depth has been used. 

 

At time 0h, most of the grid cells in the post-orogenic complex are stable 

(green), very few are unstable (red) and approximately one fourth are in an 

intermediate state (yellow). Here, the unstable and the uncertain cells are 

located on the steepest slopes of the area. Moreover, the AWI computation 

showed that the soil was at the field capacity at the beginning of the October 

1996 storm (Figure 50), therefore the terrain was saturated. At the end of the 

first interval, the red cells increased replacing the green and the yellow ones. 

The instability was amplified especially in the SW hilly area. At time 32h, the 

unstable cells increased further and faster throughout the entire study area 

equaling the uncertain ones. During the following 9h, the rain was over and 

TRIGRS simulated no variation of the stability conditions. Consequently, the 

FS values hold steady. Next, at time 62h, after a long (21h) period of rainfall 

with lower average intensity, the number of the stable cells again began to 

decrease while the unstable as well as the uncertain cells started to increase. 

During the last time step, the rain stopped again until the end of the period 

considered and so the ratio between the stable, uncertain and stable cells did 

not vary. 
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Figure 51 Soil depth profiles per slope angle, computed with the power law regressions, for clay (a), 

sandy-clay (b) and loam (c) 
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Figure 52 TRIGRS results for the October 1996 event. Figure shows the spatial and temporal 

distribution of unstable (FS ≤ 1.0), uncertain (FS = 1.0 – 1.3), and stable (FS ≥ 1.3) cells. The timing (0, 

24, 32, 41, 62, 72 h) coincides with the time steps of Fig. 7.  
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Figure 53 Quantification of TRIGRS results for the October 1996 event. Lines indicate the number of 

cells unstable (FS ≤ 1.0), uncertain (FS = 1.0 – 1.3), and stable (FS ≥ 1.3) over time, compared with the 

rainfall intervals and intensities 

 

Results of ROC (Figure 54b) shows that the TPR is always greater than the 

FPR, except for the event of July 1994, which is located in the FPR axis 

(TPR=0), and for the event of December 2009, which is nearly located in the 

diagonal (TPR=FPR). Te events with the best output of TRIGRS are October 

2005, November 1998, February 2004, and January 2007. In these cases, the 

TPR is in between 0.4 and 0.5 while the FPR is in between 0.15 and 0.25. 

Moreover, additional observations can be done with the ROC curves (Figure 

54c and Figure 54d). The value in the lower left part of these diagrams, 

correspond to the analysis of the TRIGRS run when the instability is 

considered for FS ≤ 0.8 and the stability is considered for FS  > 0.8. Continuing 

along the curves, in the following value the unstable points are selected as 

those with FS ≤ 0.9 and the stable points as those with FS  > 0.9. And so on. 

Results of these analyses are all situated above the diagonal, thus TPR > FPR, 

except for the FS ≤ 0.8 in October 1996 that is positioned almost in the origin. 

The best performance are gained by the FS ≤ 1.1-1.3, in which the TPR > 0.5 

and the FPR < 0.5. 
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Figure 54 (a) Contingency table (adapted from Fawcett (2006)) for the binary problem of this study 

and performance metrics calculated from it. (b) ROC analysis for different rainfall scenarios (July 

1994, October 1996, January 1997, November 1998, February 2004, October 2005 and December 

2009). The labels represent the number of landslides related to each rainfall event. The lower graphs 

show the ROC curves for the events of October 1996 (c) and November 1998 (d) plotted by varying the 

range of Fs values considered as TP. The upper left quadrants (highlighted) represent acceptable 

prediction levels 
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4.4 Testing the different models: the May 2014 event 
 

This chapter describes the test of the models developed in the previous 

sections, through the case study of a rainfall event that affected the Esino post-

orogenic complex in the period of 2-4 May 2014. First, a description of the 

event and its effects is provided. Second, the results of the ED, ID, and Bayes 

(1-D and 2-D) computations are presented. Finally, the outputs of the 

TRIGRS run, using the features of the May 2014 event, and the ROC chart 

are shown. 

 

 

4.4.1 The May 2014 rainfall event and landslide distribution 

 

On 2-4 May 2014, the Marche region has been affected by a particularly 

severe meteorological event, characterized by widespread rainfalls that 

occasionally have assumed the character of a strong storm (Centro Funzionale 

Regionale - CFR, 2014).  

 

The event was preceded by thirty days of approximately 99 mm of average 

rainfall all over the Region, with higher values in the southern internal 

portions (Figure 55). This very rainy period led to the saturation of the soil 

and thus reduced the capacity of water infiltration.  

 

The May 2014 event was characterized by particularly intense rainfall that 

affected the hilly-coastal portion of the Region on 2 May and intensified from 

the early hours of 3 May. Figure 56, Figure 57, and Figure 58 show the 

recorded daily rainfall on 2, 3 and 4 May 2014. The most intense rain have 

occurred in the first 6 hours of 3 May 2014.  
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Figure 55 Map of cumulated antecedent rainfall from 2 April to 1 May 2014 throughout the Marche 

region (Centro Funzionale Regionale - CFR, 2014). 

 

 

Figure 56 Map of the 2 May 2014 daily rainfall throughout the Marche region (Centro Funzionale 

Regionale - CFR 2014) 
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Figure 57 Map of the 3 May 2014 daily rainfall throughout the Marche region (Centro Funzionale 

Regionale - CFR 2014) 

 

Figure 58 Map of the 4 May 2014 daily rainfall throughout the Marche region (Centro Funzionale 

Regionale - CFR 2014) 



144 

 

The smaller basins of the Region increased the water levels and subsequently 

gave rise to the phenomenon of flooding. The main effects were recorded in 

Senigallia (Ancona province), because of the river Misa flood, and in 

Chiaravalle (Ancona province), because of the overflowing of the Triponzio, 

a tributary of the Esino (Figure 59).  

 

 

Figure 59 Lithology of the basins of the Misa and Triponzio, characterized by predominantly 

impermeable formations (Centro Funzionale Regionale - CFR, 2014). 

 

Instability phenomena have been initiated throughout the Region. Numerous 

landslides have mainly concerned the roads, causing traffic disruption (Figure 

60) (Centro Funzionale Regionale - CFR, 2014). The reports received by the 

CFR shows that the consequences interested particularly the hilly-coastal 

zone, rather than the inland of the Region. Landslides occurred also in the 

days following the rainfall event. The most recurrent slope failures have been 

rock falls, earth flows and debris flows. 
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Figure 60 Localization of the reported landslides resulting from the May 2014 rainfall event. 

 

In the study area, a total number of 19 landslides were reported and thus 

georeferenced in GIS (Figure 61). All of these failures occurred on May 3 

within the province of Ancona: 12 phenomena in the municipality of Jesi, 3 

in Belvedere Ostrense, 2 in Poggio San Marcello, 1 in Ancona and in Monte 

San Vito. 

The 19 landslides documented were associated to 3 rain gauges available in 

the study area (Figure 61): Agugliano (Ag [1220]) linked to 2 failures, Jesi 

(Je [1213]) linked to 15 failures, and Cupramontana (Cu [1263]) linked to 2 

failures. 
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Figure 61 Landslides triggered in the study area during the 2-4 May 2014 rainfall event 

 

 

4.4.2 Application of the empirical models 

 

The analysis of the event of 2-4 May 2014, for the application of the empirical 

models developed in Chapter 4.2, resulted in the computation of some rainfall 

parameters (Table 14): (i) the cumulative event rainfall, (ii) the duration, (iii) 

the maximum intensity, and (iv) the mean intensity.  

 

Figure 62 shows the logarithmic graph of the values of cumulated event 

rainfall (E) and duration (D) registered during the event of May 2014 in the 

rain gauges of Agugliano, Jesi, and Cupramontana. Je [1213] recorded the 

maximum value of event rainfall (88.4 mm), followed by Cu [1263] with 60.2 

mm, and Ag [1220] with 59.8 mm (Table 14). The amount of rainy hours was 

43 h for Je [1213], 38 h for Ag [1220], and 35 h for Cu [1263] (Table 14). 

Landslides related to the event of 2-4 May 2014 are displayed with red 

crosses. 
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 Ag [1220] Cu [1263] Je [1213] 

Event rainfall (mm) 59,8 60,2 88,4 

Duration (h) 38 35 43 

Maximum intensity (mm/h) 10,6 10,6 25,4 

Mean intensity (mm/h) 1,57 1,72 2,06 

Landslides 2 2 15 

Table 14 Values of cumulative event rainfall, duration, maximum intensity, and mean intensity 

registered in the rain gauges of Agugliano, Cupramontana, and Jesi during the event of May 2014. 

Moreover, the number of landslides related to each gauge is shown. 

 

A comparison with the ED distribution related to the historical database of 

landslides, displays consistence with the minor (Agugliano and 

Cupramontana) and the main (Jesi) events, which are defined as the rainfall 

events that triggered respectively 2 and more than 10 failures. 

 

 

Figure 62 ED graph. Comparison between the values of historical landslides and the test of May 2014. 

 

In the Esino post-orogenic complex, the maximum hourly intensities, all 

registered on May 3, were particularly high. The Agugliano station recorded 

a maximum intensity of 10.6mm/h at 2am, Jesi observed 25.4 mm/h at 3am, 
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and Cupramontana registered 10.6 mm/h at 3am (Table 14). Figure 63 

illustrates that these values are in line with the historical database. 

Particularly, records of Agugliano and Cupramontana are similar to those of 

the minor events, while the Jesi intensity is higher than usual but still in the 

cloud of data. 

 

 

Figure 63 ImaxD graph. Comparison between the values of historical landslides and the test of May 

2014 

 

The graph in Figure 64 represents the average intensities and durations logged 

by the rain gauges considered for the event of May 2014, in relation with the 

threshold tested for the study area (equation (12))(Gioia et al., 2015a). All the 

data are located above the threshold and are comparable with main, 

secondary, and minor events. In fact, the Jesi station is the one with the 

highest mean intensity (2.06 mm/h) and is similar to the values of main and 

secondary events. Agugliano and Cupramontana registered respectively 1.57 

mm/h and 1.72 mm/h, which are precipitation rates in between the secondary 

and the minor events.  
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Figure 64 ID graph. Comparison between the values of historical landslides, the threshold and the test 

of May 2014. 

 

Figure 65 shows the position of the ID values of the test, compared to the 

percentile curves developed in Chapter 4.2.2.2. According to the graph, the 

green and the yellow lines correspondingly cross the rainfall ID patterns of 

Agugliano and Cupramontana rain gauges. This means that their values match 

the 60th and 70th percentiles, which refers to 60% and 70% probability of 

landslide occurrence. Furthermore, the ID of Jesi match the orange line that 

is the 80% probability of landslide initiation. 
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Figure 65 ID probability graph. Comparison between the percentiles based on historical landslides 

and the values of the May 2014 event. 

 

Additionally, other rainfall parameters were computed for the Bayesian 

probabilistic test of the May 2014 event (Table 15): (i) the cumulative event 

rainfall, (ii) the daily rainfall of May 3, (iii) the antecedent rainfall (A5, A7, 

A15, and A30). Every value computed for the entire study area, through an 

interpolation of the rain gauges data, was compared to the probability 

intervals illustrated in Chapter 4.2.3.2 and 4.2.3.3. The results are displayed 

in Table 15.  

For the Bayesian monodimensional approach, the conditional probability of 

activating at least a landslide (P(A|B)) is: 

- 41,2% for E = 71.2 mm, which correspond to a medium probability 

(Table 6); 

- 66,7% for R = 61.9 mm, which correspond to a high probability; 

- 4,5% for A5 = 40,5 mm, which correspond to a low probability; 

- 7,4% for A7 = 60,6 mm, which correspond to a low probability; 

- 3,5% for A15 = 76,5 mm, which correspond to a low probability; 

- 2,2% for A30 = 108,2 mm, which correspond to a low probability. 

For the bidimensional method, the coupled values of R = 61,9 mm and A5 = 

40,5 mm corresponds to a category, in Table 8, which never resulted in the 

past years. However, to allow a comparison, the 5-days antecedent rainfall is 
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rounded up to 40 mm. The subsequent combination is included in a class with 

probability P(A|B,C) = 100%. 

 

1-D Value [mm] P(A|B) 

E 71,2 0,411765 

R 61,9 0,666667 

A5 40,5 0,044968 

A7 60,6 0,074074 

A15 76,5 0,035132 

A30 108,2 0,02157 
   

2-D Value [mm] P(A|B,C) 

R 61,9 
NA 

A5 40,5 

Table 15 Values of cumulative event rainfall, daily rainfall, and antecedent rainfall registered in the 

study area during the event of May 2014, and results of Bayesian monodimensional and bidimensional 

probability 

 

 

4.4.3 Application of TRIGRS 

 

The TRIGRS program was applied to the May 2014 event to test the 

feasibility of the model as landslide predictor within the study area. 

 

Figure 66 shows the landslide polygons used for the analysis. Given the 

location of the slope failures, Jesi [1213] was chosen as reference rain gauge. 

The rainfall periods selected as inputs of precipitation are shown in Figure 67. 

The values of the mean intensities are 6.02·10-08 m/s for the interval I, 

2.71·10-06 m/s for the interval II, 3.27·10-07 m/s for the interval III, 8.59·10-08 

m/s for the interval IV, and 0.00 m/s for the interval V. 

The computation of the Antecedent Water Index resulted in the choice of 

saturated initial conditions. In fact, the sandy-clay texture class reached the 

field capacity several days before the event and on May 3 the average AWI 

was 0.05 (Figure 68). The clay and loam texture classes showed similar trends 

with average AWI on May 3 slightly lower the field capacity (-0.06 in clay 

and -0.05 in loam) (Figure 68). In all the cases, a significant peak was 

registered on the days of the landslides.  
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The values of safety factor (FS), resulting from the TRIGRS runs, were 

imported in a GIS environment. The initial conditions, presented in Figure 

69, correspond to the 0am of 2 May in which the saturated soil caused 

widespread cells with “uncertain” stability (FS = 1.0 – 1.3). Only a little 

percentage of points with FS ≤ 1.0 are located in the steepest slopes. The final 

conditions, displayed in Figure 70, shows the spatial distribution of the safety 

factor at the 12pm of 4 May. At this point, a large part of the yellow and green 

cells in Figure 69 has turned into reds (FS ≥ 1.3), affecting also more gentler 

slopes. 

 

 

Figure 66 Landslides polygons of the May 2014 event 
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Figure 67 Rainfall intervals identified for the May 2014 event (I to V). Histograms show the hourly 

rainfall while the horizontal lines represent the mean rainfall of every time step 

 

Figure 68 AWI trend for the period March 1st – May 31st 2014. 
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Figure 69 TRIGRS results for the May 2014 event. Figure shows the spatial distribution of unstable (FS 

≤ 1.0), uncertain (FS = 1.0 – 1.3), and stable (FS ≥ 1.3) cells at the initial conditions (T = 0 h). 

 

Figure 70 TRIGRS results for the May 2014 event. Figure shows the spatial distribution of unstable 

(FS ≤ 1.0), uncertain (FS = 1.0 – 1.3), and stable (FS ≥ 1.3) cells at the final conditions (T = 72 h).  
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The ROC analysis indicated that, at the end of the storm, the TPR is greater 

than the FPR (Figure 71). The graph shows also that TPR>FPR is always 

verified, even when the range of cells defined stable and unstable varies. 

 

 

Figure 71 ROC curve for the events of May 2014 plotted by varying the range of Fs values considered 

as TP. The upper left quadrant (highlighted) represents acceptable prediction levels. 
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5 Discussion 

 

The present study consisted in the application of empirical and physical 

models for the determination of potential landslide rainfall thresholds in the 

post-orogenic complex of the Esino river basin. 

 

The following chapters are intended to interpret the outcomes of the described 

investigations. The results of this work can be grouped in 4 sections, 

corresponding to the parts in which the analyses were performed.  

 

 

5.1 Landslides and rainfall data  
 

The first result obtained shows that the landslide annual distribution in the 

study area is not constant over the years (Figure 10), rather some years have 

been more affected by landslides than others. This wide difference can be 

explained by attributing the slope failures not only to the predisposing factors 

(e.g., slope angle, soil thickness), which are assumed fixed or slightly variable 

from year to year. On the contrary, the triggering factors (e.g., rainfall, 

erosion) are largely mutable over time, thus they can cause very fluctuating 

effects on the soils. 

Furthermore, the initiation of landslides has a strong connection with the 

rainfall monthly distribution (Figure 11) and the meteorological season 

(Figure 13). The high percentage of failures in the winter season (December, 

January, and February) and, in contrast, the low initiation rate in summer 

(June, July, and August) demonstrate the connection between landslides and 

climatic factors. However, it must be highlighted that information on 79 

phenomena has uncertainty of the triggering day, which affected especially 

the number of landslides occurred on November 1998. Therefore, data may 

be underestimated in the autumn months. 

Moreover, Figure 14 shows that many landslides occurred in the same period, 

indicating a widespread triggering cause, not limited to the worsening of 

specific conditions, although the final spatial distribution of landslides 

depends on the local settings. 

Additionally, data recorded within the study area indicate little proximity to 

the polygons cataloged by the PAI (Figure 16 and Figure 17). In fact, the 

National Plan for the governance of Hydrogeological Hazard (PAI) is based 
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on information contained in the municipal plans, in the provincial plans and 

other specific studies developed before 2001, which is the year of its first 

adoption. This reveals the need of a supplementary analysis of landslide 

hazard within the study area, besides the work done for the PAI. 

Finally, Figure 18 displays that the soil most prone to landslides is the terrain 

with agricultural use. This may be due to the vast extent of the farmland in 

the post-orogenic complex of the Esino and to the agricultural practices (e.g., 

soil tillage, residue management, planting) that affect the slope stability 

conditions (Ayalew, 1999; Fell et al., 2008; Strudley et al., 2008; Wasowski 

et al., 2010). 

 

The rainfall data were collected from a list of rain gauges spatially and 

temporally distributed, which therefore can significantly represent the rainfall 

patterns of the post-orogenic complex. 

The MAP series from 1953 to 2011 (Figure 20) is discontinuous and 

oscillating from the average MAP. This demonstrate a cyclic (a little 

decreasing) annual trend that may depends on an extremely wide range of 

physical, climatic, and even human factors. 

The MMP series from 1951 to 2011 (Figure 21) shows also a cyclic trend, but 

conditioned by the season. This proves that in the study area the autumn, and 

part of the winter and the spring months, are normally the rainiest periods of 

the year. On the other hand, the summer months are the driest. 

 

The comparison between rainfall and landslides series indicates that, in 

general, the number of landslides are not directly related to the annual 

cumulated rainfall of the study area (Figure 22). The correlation coefficient 

tends to 0, thus the series are not mutually dependent. This outcome is 

probably due to the fact that a single rainfall datum is an excessively raw 

parameter over a year of variable meteorological conditions and does not 

allow a proper comparison between precipitation and slope failures. 

Different considerations can be done for the monthly-based evaluation. Here, 

the correlation coefficient is higher and the correspondence between the series 

more visible. Accordingly, the months with the highest average precipitation 

are responsible for the activation of the highest number of landslides. This is 

in agreement with the hypothesis that rainfall is one of the key triggering 

factor of landslides within the selected area. The exception of November is 

maybe due to the mentioned adjustment of 24 landslides, initiated between 

30 November and 1 December 1998, into the month of December. Another 

source of data alteration are the wet soil conditions. This denotes the 

importance of the antecedent rainfall, remarks that are essentially valid for 
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the months of January and February. These winter months follows a rainy 

period lasting from September to December, thus the soil in January is 

generally already saturated and easy to destabilize. Moreover, the lengthy 

melting of the snow, due to the low temperature, maybe tends to saturate the 

terrain slowly for prolonged periods and the ground effects may occur over a 

longer time scale. 
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5.2 Empirical models 
 

The application of empirical models to the study area led to several significant 

results. 

 

First, the majority of the landslides were triggered during the main events. 

This is perhaps due to the nature of the available database of landslides, which 

mainly refers to reports of circumstances that caused widespread damages to 

the citizens and the territory. 

 

Second, Figure 25 shows that the correlation between cumulative event 

rainfall (E) and duration (D) is positive; the higher is the duration of an event 

and the greater is the total amount of precipitation needed to trigger at least 

one landslide in the study area. This general trend is confirmed except for a 

value out of scale, which is located in the lower left corner of the graph, close 

to the x-axis. This datum may represents two landslides that are not directly 

related to precipitation or that depend on antecedent rainfall..  

Moreover, from the distribution of main, secondary, minor, and single events 

is noticeable that different cumulative rainfalls and durations correspond to 

different number of landslides occurred in the territory (Figure 25). For 

example, abundant and widespread landslides are generally caused by a 

rainfall event that last at minimum 20 h and is characterized by a total amount 

of precipitation higher than 38 mm. The large scattering of data concerning 

single events makes difficult to generalize the ED bounds accountable for 

those activations. On the other hand, the minor and the secondary events, 

which are gathered in the middle of the graph, present evident minimum 

values of ED (20 h and 34 mm for minor events, 13 h and 36 mm for 

secondary events) which in the forecast activity can be considered as 

threshold values. 

From the comparison with data of the analysis and the thresholds curves 

found in the literature, it is observable that the thresholds are representative 

of the general tendency of the data (Figure 26). However, not all the curves 

can be considered as minimum thresholds for the study area. In fact, the more 

the area involved in the analysis is large and generalized (e.g. the global 

thresholds of Caine 1980) and the more the lines overestimates the 

distribution of data and thus the probability of landslide. The curves more 

feasible for the study area are those of Peruccacci et al. (2012), developed for 

the post-orogenic sediments of the Marche, Abruzzo, and Umbria regions. 

However, these thresholds does not represents the 1% and 5% probability 
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exceedance, giving significance to the choice of selecting circumscribed areas 

along with similar lithological settings. 

 

Third, the analysis computed with the maximum intensities and durations 

(Figure 27) displays a large scattering along the y-axis. This indicates that the 

maximum intensities, which characterize the event that triggered landslides 

in the study area, present a large variability. The reason is due to the different 

meteorological conditions that are responsible of landslide initiation, which 

strongly depends on the season. For example, the storms commonly affecting 

the spring or the summer have higher intensities and shorter durations if 

compared to the autumn and winter ones. In fact, the general trend of the 

ImaxD graph is that low intensities and long-term precipitations trigger the 

main events, whereas a wider range of rainfall parameters initiates the single 

events. Excluding the outlier, the minor and secondary events present limited 

durations but scattered intensities. As described before, this spreading can 

make the landslide prevision difficult to calibrate. 

In the case of mean intensities and durations, the descending trend and the 

distribution of the events are confirmed (Figure 28). The negative value of 

the β parameter in the developed threshold proves that longer rainfall events 

require lower intensity to trigger at least one landslide in the study area. 

However, the distribution of data is more confined within the y-axis. For this 

reason, the ID method is more suitable for landslide forecasting than the 

ImaxD. Moreover, it is easier to identify for each class of events the range of 

rainfall ID conditions likely to result in hillslope failures, excluding the single 

failures that are diffused along the duration axis. 

The developed threshold is valid only in the range of duration in which was 

inferred, namely between 4 h and 167 h. The low steep of this curve highlights 

that the duration of the event is not as significant as the mean intensity, which 

discriminates the condition of slope failure (Guzzetti et al. 2008). In fact, the 

low intensities necessary to trigger landslides attributes importance also to the 

antecedent precipitation. This suggests that slope failures triggered after long 

periods of low rainfall intensity are the result of processes not accounted for 

by the simple ID model adopted. Deriving from the comparison with the other 

thresholds, the variances among the curves denote the importance of the 

hydrogeological setting of the area for the application of such model.  

Finally, Figure 29 shows that the general trend of the curves is descending, 

and the shape of the threshold is largely preserved. The probability curves 

associate the row data of the database to a detailed probability of occurrence, 

valid for every combination of intensity and duration in the range of 

effectiveness of the ID threshold (4h<D<167h). Moreover, the different 
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distances between the lines, attribute elevated importance to the values of 

intensities when the duration of the storm is shorter than 20 h, whereas for 

longer rainfalls a small range of mean intensity values (about 0.70-2 mm/h) 

is likely to trigger landslides independently of rainfall duration. This result 

allows considering the seasonal variability of the rainfall ID patterns, along 

with the possible effects on the ground in the post-orogenic complex of the 

Esino basin. 

 

Forth, the Bayesian analysis enabled to evaluate in a probabilistic framework 

the significance of a rainfall variable in explaining the initiation of a landslide 

event. Bayes contemplates that the same rainfall event may or may not result 

in a landslide, depending on a large number of factors. In the Bayes’ theorem, 

if P(A|B) objectively differs from P(A), the variable B has a significant 

influence on A; if P(A|B) ≈ P(A) there is no mutual influence. Moreover, a 

large difference between P(B|A) and P(B) results in high landslide probability 

and stresses the importance of the variable B. 

The results of the analyses are shown from Figure 31 to Figure 42. The charts 

clearly display that cumulative event rainfall and daily rainfall are strongly 

significant. In these cases the distributions of P(B|A) and P(B) are markedly 

different and the corresponding landslide probability P(A|B) is well above the 

prior probability P(A) (from Figure 31 to Figure 34). The cumulative event 

rainfall, in particular, seems to be the most significant variable, showing 

values of P(A|B) as high as 0.75 for E > 120 mm (Figure 32). In fact, the 

probability of landsliding rises with the severity of the event, namely with 

increased daily or cumulative rainfall, except for the highest values of E (E > 

120 mm ) in which P(A|B) decreases (Figure 31). This unexpected outcome 

is mainly due to the small number of samples of such magnitudes, which 

affect the statistical computation of the probability. 

In the case of five days antecedent rainfall, the differences between the 

marginal (P(B)) and the likelihood (P(B|A)) probabilities, therefore between 

the prior (P(A)) and the posterior (P(A|B)) probabilities, are reduced. P(A|B) 

never exceeds 0.16 in the expanded analysis (Figure 35) and 0.12 when 

considering rainfall intervals (Figure 36). This means that the sole five days 

of antecedent rainfall are not statistically significant for the initiation of 

landslides in the post-orogenic complex considered. The same evaluation can 

be done for the seven days antecedent rainfall in which P(A|B) never exceed 

0.17 in the expanded analysis (Figure 37) and 0.09 when considering the 

rainfall intervals (Figure 38). Results are even poorest for 15 and 30 days of 

antecedent rainfall: the maximum values of P(A|B) is respectively 0.04 in the 

rainfall intervals of Figure 40 and 0.01 in the rainfall intervals of Figure 42. 
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In these cases, P(A|B) ≈ P(A), thus the A15 and A30 control variables appear 

statistically irrelevant for the initiation of landslides in the study area, which 

means they are randomly related with landslides. Consequently, apparently, 

landslides in the study area are not correlated with the antecedent 

precipitation of the 15 or 30 days before the event. A possible explanation of 

this result may lie in the criterion used for rainfall identification or in the fact 

that the analysis provides the probability of having at least one landslide and 

does not consider multiple events. In fact, antecedent saturated conditions are 

usually related to widespread (multiple) landsliding (Godt et al., 2006). 

The two-dimensional Bayesian analysis supply additional information to 

improve the knowledge on how effective are the variables in local landslide 

activity. The advantage of the 2-D model is to consider that two (or more) 

rainfall variables can reciprocally influence the conditional probability of 

landslide and thus they can enhance or worsen the consequences on slope 

stability. In the example of the study, the posterior probability is deeply 

conditioned by the joint probability of daily and antecedent rainfall. This can 

be demonstrated by the different values of P(A|B) in Figure 43 compared to 

Figure 34 and Figure 36. Particularly, an antecedent five days of rainfall 

shorter than 20 mm reduce the probability of rainfall in every interval 

considered for the 1-D daily rainfall. Overall, the influence of antecedent 

rainfall on P(A|B) rises with both the increase of the antecedent rainfall itself 

and the increase of the daily rainfall. On the other hand, the lower than 

expected landslide probability observed for rainfall events characterized by 

40≤A5≤60mm and 20≤R≤40mm or 40≤R≤60mm, may be due to the lack of 

landslide data or to a bias caused by rainfall data interpolation. 
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5.3 Physical model 
 

Results of the application of the TRIGRS model to the post-orogenic section 

of the Esino catchment area have numerous significances. 

 

First, the variability in rainfall amount and intensity among the refined 

landslide-inducing storms confirms that conditions related to landslide 

initiation in the study area are complex. Table 9 shows that neither peak 

hourly rainfall intensity, nor duration are strongly correlated with the number 

of landslides, although the database could be refined by considering specific 

timing of landslides related to each storm and more precise duration (to the 

nearest hour, rather than rounding up to the nearest day). On the other hand, 

the relationship between slope failures and cumulative rainfall is high. 

Because of this high variability, for a better understanding of the landslide 

initiation in the study area, an approach that is capable of considering a wider 

range of variables seems justified. 

 

Second, almost all the landslides of the database were triggered in fine-

grained soils (Table 10), which usually are more characterized by short-term 

responses to rainfall.  

 

Next, the review of the physical parameter values found in literature shows 

results consistent with the characteristics of the soils in the study area (Figure 

44). As expected, the median values of cohesion are higher for clay and 

smaller for sandy-clay, while the loam texture is in the middle. The range for 

cohesion is large because it vary considerably, depending on the compactness 

and the saturation. The angle of internal friction also reflects the estimates, 

because the values of clay are lowermost, whereas the loam and the sandy-

clay are upmost (with a higher median for sandy-clay). The soil unit weight 

usually varies depending on the amount of water contained in the pores, thus 

is strongly connected with the diffusivity and the conductivity of the soil. In 

fact, while the unit weight resulted averagely higher in clay and progressively 

lower in sandy-clay and loam, the trends of saturated hydraulic diffusivity 

and conductivity is opposite. Furthermore, the value of the storage parameter 

SS (KS/D0) is higher for clay, followed by loam and finally sand, which is 

consistent with the greater ability of clay to accumulate water. Results of the 

analysis of residual water content indicate that the mean percentage of water, 

retained by the soil after drainage, is higher in loamy then in sandy-clay soils. 

In fact, the void volume in the loamy soils is elevated, because the particle 

size is more variable. On the other hand, the average saturated water content 
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is highest in clay and lowest in sandy-clay. This is in accordance with the 

common values of porosity in these soils. Finally, the inverse height of the 

capillary fringe present anomalies in the values, because generally the height 

of capillary rising is higher in clay, medium in loam and low in sandy-clay. 

Results of the data collection shows instead an elevated inverse height of 

capillary fringe in clay soils. However, the significance of these values is 

slight due to the lack of data from literature. 

 

Furthermore, the calibration of TRIGRS and the analysis of its sensitiveness 

to hydraulic property values (Figure 46 and Figure 47) induced several 

observations. 

First, the pressure head peaks at definite values because under downward 

gravity-driven flow, it cannot exceed the value resulting with the water table 

at ground surface (Iverson, 2000). For this reason, TRIGRS automatically set 

the maximum pressure head as the value for slope-parallel flow. 

Second, the slow decreasing of pressure head in UNS-FIN conditions is in 

agreement with the water absorption of the unsaturated media that delays the 

rise of pressure head at 1 m depth. In addition, the hypothetical less permeable 

bedrock is responsible for the slower drainage during dry periods as compared 

with the INF-SAT model. However, in the clay texture class the pressure head 

does not decrease. Indeed, the low hydraulic conductivity of the clay, which 

in the runs ranges between 10-8 and 10-6, plays an important role reducing the 

drainage of the infiltration flux. 

Furthermore, the variations of saturated hydraulic diffusivity in UNS-FIN 

conditions led to no difference in the pore pressure trends (graphs j-k-l in 

Figure 46 and Figure 47), except in the clayey soils. In fact, in sandy-clay and 

loam the point of view of the analysis coincides with the initial water-table 

depth so that the linearized Richards equation for the above-unsaturated zone 

is solved using only the soil-water diffusivity DΨ (equation (16) and equation 

(17)). In the clay example, on the other hand, the initial water table is at 0.5 

m and the point of view of the analysis is below the water table, in the 

saturated zone, where the Fourier series’ solution requires the saturated 

hydraulic diffusivity D0 (equation (18)). 

Additionally, results display that the increase of pressure head is higher with 

lower conductivity, which denotes a greater ability to impede drainage, and 

with higher diffusivity on equal conductivity settings, which indicates a lower 

specific storage. 

Moreover, the comparison of the October 1996 and November 1998 storms 

indicated that the pressure head in every plot of the October 1996 storm rises 

less sharply and reaches values consistently inferior than November 1998. 
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The reason is that, even if the intensity is higher in the first storm, the total 

amount of precipitation is greater in the second one. However, even though 

the raising of pressure head was lower in October 1996, it was sufficient to 

affect the slope stability of clayey areas probably due to the low permeability 

of those soils. Conversely, the higher number of landslides triggered in 

November 1998 are probably due to the larger amount and duration of the 

rainfall, which in the first days was able to saturate even a soil with high 

conductivity (Figure 47). These results reveal that, beyond the different total 

amount of rainfall (105.8 mm in October 1996 and 138.2 mm in November 

1998) and duration (72 h and 120 h respectively), the soil properties strongly 

influence landslide initiation. 

Finally, the comparison of pressure head in the different textures, summarized 

in Figure 48, confirms that the responses of the soil in sandy-clay and loam 

textures are quicker than in clay. As a matter of fact, several investigators 

(Baum et al., 2010; Biavati et al., 2006; Casagli et al., 2006; Hewlett and 

Hibbert, 1963; Tofani et al., 2006; Von Ruette et al., 2013) have observed that 

the pressure head rises more quickly in soils with greater saturated hydraulic 

conductivity. Iverson (2000) observed: i) a negligible pressure head rise in a 

clay-rich soils after 10 days of low-intensity rainfall, and ii) a sudden increase 

in a sandy-loam soils after 10 minutes of high-intensity rainfall. Berti and 

Simoni (2012) also noted that (a) in sandy soil the pressure head increase can 

be very significant despite a low pre-storm water level, and (b) in clay soil 

the pore pressure rises faster than it falls afterwards. Godt et al. (2008) found 

that the deeper s the initial water table, the higher is the required rainfall 

intensity or duration to initiate a landslide. Therefore, in addition to the 

intensity and the duration of the storm, an elevated initial water table in the 

clay is needed to explain slope instability during the storms. Figure 48 

highlights also that the pressure head total variations are higher in UNS-FIN 

conditions. The peculiar findings of this study can be explained as the 

consequence of the impermeable boundary layer at 1m depth in the UNS-FIN 

model, as reported by Tofani et al. (2006) and Godt and McKenna (2008).  

Summarizing, results shows TRIGRS to be consistently sensitive to the 

variations of the initial soil properties and moisture. The model confirms that, 

for the same rainfall flux, the pressure head increases more with lower 

conductivity and higher diffusivity conditions but the soil properties in the 

different texture classes modify the magnitude of the responses. Moreover, 

TRIGRS proves that unsaturated conditions delay the rise of pressure head at 

1 m depth and an impermeable basal boundary reduces the total drainage. The 

model comparison between the two storms highlights the rapidity of the 

sandy-clayey and loamy soils responses to the infiltration compared to those 
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of the clayey ones. This stresses also the importance of the rainfall hyetograph 

shape for the development of the landslide scenarios. In fact, pressure head 

variation and rainfall rate have a direct relationship but the greater is the 

duration of the storm, the more marked are the changes. However, TRIGRS 

sensitivity to the saturated hydraulic properties, and nonetheless to the rainfall 

intensity and duration attests the importance of having well-defined initial 

scenarios to achieve results as close as possible to the local conditions. 

 

The final part, which is the spatial application of TRIGRS (Figure 52 and 

Figure 53), showed the temporal and spatial distribution of the safety factor 

values over the study area. At the beginning of the October 1996 event, there 

were already intrinsic conditions of possible instability. These conditions are 

represented by for example local physical conditions that can affect the 

slopes. Moreover, the saturation of soil at the beginning of the storm (Figure 

50) caused the worsening of the initial settings. At 24 h, the FS ≤ 1.0 cells 

increased even with small amounts of rainfall, probably because the soil 

wetness had made the terrain very fragile and prone to changes in stability. 

At 32h, the steep increase of unstable cells is due to the 8h of intense rainfall 

with the highest average intensity of the event. At 40 h, the storm stopped and 

the distribution of FS did not vary, due to the presence of an impermeable 

boundary in the soil that prevented the water from draining and the pressure 

head from decreasing. At 62h, the gentle increase of points with FS ≤ 1.0 was 

caused by the long period with lower intensity rainfall (Figure 49) that 

probably infiltrate in the soil and affected the values of pressure head at 

greater depths (Figure 46). In fact, the FS considered as output of TRIGRS is 

the value correspondent to the soil surface. At this time, both reds and yellows 

replaced the green cells, thus demonstrating the deteriorating of the stability 

conditions throughout the whole area and extended to the gentler slopes. 

Indeed, this interval coincided with the highest variation in pressure head 

(Figure 46) often resulting in the surpassing of the instability threshold (the 

red line). At the end of the storm, the FS remained identical to those at 62 for 

the same reasons described before at 40 h. 

Results of ROC (Figure 54) indicate that for the events that triggered a single 

landslide TRIGRS tends to minimize both FPR and TPR, thus it over predicts 

the extent of the unstable cells and the performance is low. In fact, the lowest 

data represents one landslide activated at the end of July, when the soil 

parameters could sensibly vary from the rest of the year. Moreover, to 

simplify the computations, a uniform value of rainfall has been used for the 

analysis, which is largely simplistic for an area of 550 km2 especially in 

summer, when the storms are often sudden and confined. On the other hand, 
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for scenarios that are more acute, TRIGRS increases the TPR and so the 

sensitivity. Results showed also that the simulations with instability 

boundaries within the interval 1.1 - 1.3 maximizes the agreement between 

known and predicted landslides for both the events. This range coincided with 

the values of the yellow cells previously classified with uncertain instability. 

Thus, accounting as unstable the uncertain data would improve the 

effectiveness of the model. 

In the application of the physical model, three factors were considered 

responsible for landslide susceptibility in the study area: (i) soil texture, (ii) 

rainfall, and (iii) slope. Indeed, refining the zoning with additional factors that 

control landslide distribution, would enhance the discriminatory power of 

distinguish landslide from non-landslide areas and thus of susceptibility 

mapping. However, more detailed and confined zones would decrease the 

number of physical parameters values available for every area and necessary 

for the statistical analyses executed during the phase of calibration. Therefore, 

the refinement of the approach would require the collection of supplementary 

information on the study area that might be difficult to access. Additionally, 

for this area of smooth, rolling hills, with the available data, making better 

assessment of the landslide susceptibility would be challenging regardless of 

the method used. In fact, from the historical database, there is not any well-

defined relationship between landslides and topographic variables, such as a 

narrow range of slope angles, or slope curvature (e.g. concave slopes).  
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5.4 Test 
 

The event of 2-4 May 2014 was used to test the empirical and physical models 

developed for the study area. 

 

Results of the ED distribution (Figure 62), compared to the historical database 

of landslides, displays values included in the ranges of duration and 

cumulative rainfall typical of the minor (Agugliano and Cupramontana) and 

the main (Jesi) events. Indeed, the number of landslides related to the rain 

gauges are 2 for Agugliano and Cupramontana, therefore these are considered 

minor events, and 15 for Jesi, which is considered a main event (Table 14). 

Likewise, the ImaxD and the ID values of the landslides triggered during the 

May 2014 event (Figure 63 and Figure 64) are in agreement with the historical 

database. Particularly, records of Agugliano and Cupramontana are similar to 

those of the minor events, while the Jesi intensity is higher than usual but still 

in the cloud of data. These results suggest that the rainfall parameters of the 

test are comparable with the distribution of previous events. Moreover, the 

coupled values of E, Imax, I, and D demonstrated to be representative of the 

magnitude of the effects within the study area, namely the number of 

landslides associated to every rainfall event.  

Additionally, all the ID data recorded for the test are located above the 

threshold (Figure 64). Also, according to the Figure 65, the values registered 

in the Agugliano and Cupramontana stations match 60% and 70% probability, 

whereas the ID of Jesi match the 80% probability of landslide initiation. The 

implication of these results is that the distributions of ID that triggered 

landslides in the past are still representative nowadays. Moreover, the 

threshold computed in this study is validated for the post-orogenic complex 

of the Esino river basin. Finally, the probability graph further distinguishes 

the events that can cause a higher number of landslides from those that are 

likely to trigger fewer failures, by attributing to the rainfall parameters a 

different value of landslide probability. 

 

The Bayesian test showed which parameters are more effective for the 

landslide forecast activity in the study area. The one-dimensional approach 

demonstrated that for the event of May 2014 only the cumulative event 

rainfall and the daily rainfall revealed landslide probability levels higher than 

the low class (Table 15). The event rainfall was associated to a medium 

probability, while the daily rainfall to a high probability. Indeed, an event that 

trigger 19 landslides has to be related at least to a medium conditional 

probability for considering the rainfall parameter reliable. This confirms the 
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considerations made during the development of the model, for which the 

antecedent rainfall seems not critical in the post-orogenic lithologies. On the 

other hand, the two-dimensional approach demonstrated that the combination 

of daily and five days antecedent rainfall computed is higher than ever 

occurred in the past years considered for the model design (Table 15). For 

this reason, the conditional probability could not be computed. This could 

indicates that the magnitude of the event of May 2014 was particularly 

significant. Additionally, this limit can be attributed to the consistency of 

information related to failures occurred in the territory (lack of information in 

some years and for some events) and then to the low density of rain gauges 

in the area. 

After rounding up the value of antecedent rainfall, to allow the computation 

of P(A|B,C), the result obtained was a high probability level. The value of 

P(A|B) for R was 0.67. When coupled with A5, the value of P(A|B,C) raised 

to 1. Therefore, the test demonstrated that the 2-D Bayes’ theorem helps in 

attributing importance to the antecedent rainfall, in term of probability of 

occurrence, when coupled with the daily precipitation. This correlated R-AD 

effect is possibly explained by the medium-low permeability of the soils, 

which keeps the water table close to the ground surface, especially throughout 

the wet season, and consequently causes a sudden connection between the 

rainfall and pore-pressure increase (Berti and Simoni, 2010). Additionally, 

this test highlighted the importance of keeping updated the database of 

landslides and rainfall for adapting the thresholds to the present rainfall 

patterns, also in the light of the current climatic trends. 

 

Results of TRIGRS test for the May 2014 event showed that the model 

effectively predicts the spatial distribution of landslide with an acceptable 

level of performance (Figure 70). The ROC analysis indicated that, at the end 

of the storm, TPR>FPR is always verified (Figure 71). The outputs are 

comparable to those of the November 1998 event (Figure 53), which triggered 

18 landslides. Results are maximized when the valuation of instability is 

extended to the points with FS between 1.1 and 1.3 (highlighted area in Figure 

71). This means that the areas with uncertain conditions may represent a 

geologic hazard as much as the cells with FS ≤ 1.0. This test validates the 

physical model as useful tool for landslide susceptibility assessment over 

broad regions and, nonetheless, as landslide spatial predictor in the study area. 
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6 Conclusion 

 

The main objective of this study was to provide some methodologies for the 

determination of possible landslide rainfall thresholds to implement in the 

warning system of the Regional Functional Center of the Marche Civil 

Protection. In order to accomplish this, both empirical and physical predictive 

models has been applied in a particular area located in the hilly-coastal part 

of the Esino River Valley (Marche region, central Italy). This area was chosen 

for several reasons: (i) is characterized by lithologies with similar 

hydrogeological features, such as medium-low permeability, which makes it 

subject to rainfall-induced landslides; (ii) is high populated, compared to the 

rest of the Region, thus the exposure to the landslide hazard is significant; (iii) 

information on past landslides are more readily available, given the presence 

of human settlements in the area; (iv) is subject to shallow landslides, which 

are suitable for both empirical and physical models. 

Every technique has intrinsic advantages and limitations. For example, the 

empirical models consider the history of the territory in order to design the 

future trends but do not take into account of the change in the hydrogeological 

features or in the rainfall patterns over time. On the other hand, the physical 

models contemplate the current spatial distribution of the input parameters 

(e.g. geomorphological, geotechnical, and hydrological data), but they are 

over detailed for an application on broad areas. The core assumption of the 

research was that the estimates of shallow failures in the study area is 

enhanced when empirical and physical models are jointly used and run 

simultaneously. This, during the delicate phase of forecast conducted by the 

Marche CFR, allows (i) the individuation and the comparison of the main 

triggering factors because the methods are applied in the same region, (ii) the 

use of the advantages of one model for the implementation of the other, and 

(iii) the attenuation of the weaknesses because they are run in parallel. 

 

The first part of the research demonstrated that the correlation between 

landslides and rainfall in the study area is positive. Results are thus in line 

with the literature, which mainly attributes the slope failure occurrence to the 

precipitation factor. However, the high variability of the local conditions 

makes extremely important the weather monitoring as well as a further 

knowledge of the rainfall patterns that triggered landslides, to predict the 

possible effects on the ground. 
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The correlation between landslides and temporal distribution of rainfall, in 

the post-orogenic sediments of the Esino river basin, was verified by the data 

gathered for this research. Although the comparison between MAP an annual 

landslide frequency was very low, the cross-correlation coefficient of the 

MMP series and the monthly landslide frequency was equal to 0.43. 

Considering some approximation, such as the uncertainty of the exact 

triggering day for some landslides or the effect of the snow melting on the 

soil, the correlation value is sufficient to evaluate the rainfall one of the key 

triggering factors of slope failures.  

 

The second part of the study proved that the application of empirical models 

at a local scale, in an area with approximatively similar hydrogeological 

properties, enhance the prediction of landslide occurrence. The selection of 

these input features made the methods and the rainfall thresholds more 

effective for the study area. This observation was done through the 

comparison of the critical rainfall data distribution with other global, regional 

or local thresholds. Results displays that, even if the curves fit the general 

trend of data, they do not represent the minimum thresholds, possibly due to 

the variability of the environmental (hydrological, geological and climate) 

settings. The variances among the curves denote the importance of the 

hydrogeological setting of the area for the application of empirical models. 

Moreover, the most effective parameters for the definition of rainfall 

thresholds, for the initiation of landslides in the Esino post-orogenic 

sediments, are (i) cumulative event rainfall (E), (ii) mean rainfall intensity (I), 

(iii) duration (D), (iv) daily rainfall (R), and (v) five days antecedent rainfall 

(A5), only if considered with daily rainfall. 

The event rainfall resulted highly significant both in the Bayesian and in the 

ED method. The Bayesian analysis, which attributed importance also to the 

daily rainfall, enabled to compute the conditional probability of landslide, 

when a particular rainfall event occurs within the study area. Compared to the 

other empirical analysis applied, the improvement of this model is the 

consideration of all the rainfall events, whether they resulted in landslides or 

not. The ED method correlated the cumulative rainfall and the duration of 

those events that triggered landslides in the past years, finding that the greater 

is the duration of a rainfall event and the greater is the amount of precipitation 

needed to activate at least one landslide in the study area. Furthermore, 

different ranges of ED can cause different frequencies of landslides per 

rainfall event.  

The mean rainfall intensity showed strong significance, especially when 

coupled with the duration parameter in the ID model. As opposed to the ED 
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approach, the greater is the duration of a rainfall event the lower is the mean 

intensity necessary to trigger one or more landslides. The classification of the 

rainfall events, based on the number of landslides occurred is still possible in 

this model. Additionally, the rainfall threshold in the form of a power law was 

developed to represent the ID settings with a greater than 10% likelihood of 

landslide initiation in the study area. The low slope of this curve highlights 

also that the mean intensity is more decisive than the duration for the stability 

conditions, whereas the low intercept of the equation indicates the importance 

of antecedent conditions. The significance of the intensity values is confirmed 

also from the probability ID graph, especially for durations shorter than 20 h, 

in which the seasonality of the rainfall patterns play a key role. 

The five days antecedent rainfall resulted significant only when coupled with 

daily rainfall in the two-dimensional Bayesian analysis. Apparently, the one-

dimensional approach showed that landslides in the study area are not 

correlated with the antecedent precipitation in the 5, 7, 15 or 30 days before 

the event. This finding is rather surprising because it is generally observed 

that antecedent rainfall conditions strongly affect slope stability in fine-

grained soils. However, the two-dimensional Bayesian analysis shows that 

the conditional probability intensifies with both the increase of the antecedent 

rainfall and the increase of the daily rainfall. The reason is probably due to 

the oversimplification of the Bayes’ theorem when merely one variable is 

considered to affect the stability of such a large area. 

 

The third part of the investigation aimed at describing an innovative 

methodology for the application of a deterministic model for shallow 

landslide forecasting at a regional scale. The USGS TRIGRS physical model, 

which is an infinite slope stability model coupled with 1-D infiltration 

models, demonstrated that a deterministic method can be applied over large 

areas by considering the historical landslide and rainfall databases and by 

statistically infer the physical property values. To achieve this result, a 

complex analysis was accomplished. 

First, the mechanical and hydrological properties (cohesion, friction angle, 

soil unit weight, saturated hydraulic conductivity, saturated hydraulic 

diffusivity, saturated water content, residual water content, and inverse height 

of capillary fringe) of the soil textures that characterize the study area were 

collected from a literature review. Consequently, the sample minimum, the 

lower quartile, the median, the upper quartile, and the sample maximum of 

each set of considered parameter has been tested in the model for its 

calibration in a single representative cell. The combination of values that led 

to instability conditions, during two of the historical rainfall events that 
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triggered several landslides in the post-orogenic area (October 1996 and 

November 1998), were selected. After picking these parameters, a 

comparative analysis of the pressure head variation in the soil texture classes 

(clay, sandy-clay and loam) was performed to simulate the groundwater 

conditions throughout October 1996 and November 1998 rainfall events. 

TRIGRS was used to simulate variation in pressure head in a representative 

profile of the study area. Saturated hydraulic conductivity, hydraulic 

diffusivity and initial depth of the water table were varied, as well as the 

hillslope conditions (saturated-unsaturated, infinite-finite depth boundary). 

This simulation aimed at quantifying the sensitivity of the TRIGRS model to 

these variations and its ability to discriminate effects of variable rainfall on 

slope stability in different soil types. Results revealed that TRIGRS enable to 

successfully simulate the condition of the hillslopes during two different 

rainfall scenarios.  

Afterwards, the feasibility of TRIGRS as landslide predictor was verified by 

applying the model over the entire study area and comparing the results of the 

computation of safety factors against the inventory of local landslides 

triggered during the period 1990-2012. Input data selected during the 

calibration, along with a soil moisture and a soil depth model, were tested for 

some storm scenarios that triggered the historical landslides. The ROC 

technique applied to the results showed that, despite all the limitations 

inherent the application of a deterministic approach in an area with little 

information about the soil properties, TRIGRS effectively simulated the 

instability conditions in the post-orogenic complex. The analysis presented 

here, with simple assumptions and inferred input data, represents an example 

for scientists and decision makers that need to assess the stability condition 

of an area at regional scale with limited financial supports. Furthermore, 

TRIGRS outcomes were enhanced when the upper limit condition for the 

instability were extended to the uncertain values (FS = 1.0-1.3). The reason is 

maybe due to local circumstances, such as for instance a road cut or a fallow 

land, which can facilitate the initiation of a landslide, especially on slopes 

with factor of safety close to the failure conditions. Therefore, this study also 

proved the importance of considering a level of uncertainty as a confidence 

interval to improve the landslide forecasting activity within the study area. 

 

The fourth part of the research consisted in the test of the empirical and 

physical models previously developed, on the rainfall event of 2-4 May 2014 

that affected the study area and a large portion of the Region. The validation 

allowed a comparison of the methodologies applied in the study area for 
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choosing the best model to be applied in the forecast system of the Marche 

CFR.  

In fact, the test demonstrated that all the methods proposed are reliable and 

effective for the post-orogenic section of the Esino basin. Moreover, each 

technique highlighted a particular feature of the rainfall and landslide 

correlation, so that the concurrently use of all the models could permit an 

enhanced forecast. Particularly, the ED and the ID models considered the 

extent of the storm effects in term of number of landslides possibly triggered. 

The ID probability graph showed the likelihood of slope failure, depending 

on the mean intensity and duration of the historical events. The Bayesian 

approach estimated the most effective rainfall parameters for the study area, 

which are the cumulative event and the daily rainfall, and emphasized the 

importance of the antecedent rainfall, in term of probability of occurrence. 

Lastly, the application of TRIGRS allowed the forecast of the real-time spatial 

distribution of potentially unstable zones within the study area.  

 

A number of possibilities were opened from the results of this study. This 

suggest a variety of research directions that may be pursued to make the 

methodology feasible for a direct application in the warning system of the 

Marche CFR. 

One direction already undertaken has been the study of the effects of climate 

change on landslide initiation in the study area, which findings demonstrate 

show an overall increase in projected landslide occurrence over the twenty-

first century, especially in summer (Sangelantoni et al., 2018). 

Moreover, it would be interesting to investigate how to develop a decisional 

algorithm for the landslide forecast in the study area. This step-by-step well 

defined instructions could encourage the parallel or the consequential use of 

both empirical or physical model to help the Civil Protection decision maker 

in solving the problem of early warning issues. 

Another possibility would be to improve the predictive power of the models. 

For example, the landslides and rainfall databases could be updated with 

reports of the 2013- 2014 landslides occurred and with the assistance of 

remote sensing techniques to obtain more precise data on landslides location, 

type and extension. Moreover, the ED and ID approaches could be further 

refined by normalizing the cumulative event and the intensity values with the 

mean annual precipitation (MAP), thus emphasizing the regionalization of the 

thresholds, or by considering also the rainfall events that did not triggered 

landslides. Additionally, these models could be coupled with the land use 

information to guide the efforts of hazard monitoring and risk mitigation, 

because, once exceeded the triggering threshold in the weather forecast, the 
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most fragile areas of the region may be individuated. Furthermore, the 

Bayesian method could be enriched by extending the analysis to other 

independent variables (e.g. number of landslides effectively triggered, land 

use, soil moisture, slope angle). Besides, the TRIGRS model could be 

improved by a real-time monitoring system that could mines the current 

physical property values in few key points (e.g. one for each textural class) 

within the study area. 

Finally, the methodology described possibly will be extended to other zones 

of the Marche region, even in the mountains where the hydrogeological 

characteristics are different, to support the forecasting activity in those areas 

and compare the results with this study. 

 

In conclusion, this research developed a methodology for the concurrently 

application of empirical and physical landslide predictive models, in a 

550km2 area of comparable hydrogeological features. The empirical models 

were calibrated at local scale and using similar geologic settings. The physical 

model was implemented by the historical landslide and rainfall series and by 

a statistical computation of the physical properties values. The encouraging 

results obtained in the framework of the activities carried out in this project 

have shown that a diversified methodological approach is the best way to 

study a complex problem as the landslide hazard in the Marche region. 
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