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2. A Collection of Statistical Methods for Analysis of the 

Disaster Damages and the Seismic Regime 
 

Vladilen F. Pisarenko1, Mikhail V. Rodkin2 
 
 
Abstract 

 
In this paper, we present a collection of statistical methods addressing 

heavy tailed distributions. The empirical distributions of damage from natural 
disasters, both in terms of material losses and fatalities, are often modelled by 
theoretical distributions with a heavy power-law tail. The distribution of 
earthquake energy (seismic moments) is another example of such a heavy 
tailed distribution. The statistical methods that we discuss here allow to 
perform an analysis of empirical distributions at different levels depending on 
the amount of available data. We perform a detailed analysis of heavy tailed 
distribution using the theory of extreme values, and discuss the related 
examples. The presented methods of analysis of heavy tailed distributions 
constitute a toolbox, which can be useful in a number of practical 
applications.  

 

Keywords: disaster related damage; power-law distribution, heavy tailed 
distribution; theory of extreme values; seismic regime.  

 
 

Introduction 

 
Most of the damages produced by natural disasters, such as earthquakes or 

typhoons, are caused by rare and strong events, which release large amounts 
of energy. Many authors  emphasize the universality of the power law 
distribution when characterizing natural hazards [Turcotte & Malamud, 2004; 
Newman, 2005;  Sornette, 2000; Kijko, 2011; O’Brien et al., 2012; Liu  et al., 
2014; Kousky, 2014; Smit et al., 2017; Rougier et al.,2018].  Power law 
distributions are observed for damages caused both by natural and by man-
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Geophysics, Russian Academy of Sciences, Profsoyuznaya 84/32, Moscow 117997, Russia.  
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2 Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy 
of Sciences, Profsoyuznaya 84/32, Moscow 117997, Russia.  E-mail: rodkin@mitp.ru. 
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made disasters, as well as for energy values and for seismic moments of 
earthquakes [Sornette, 2000; Clauset et al., 2009]. The main contribution to 
the damage caused by disasters with a heavy-tailed distribution is due to rare 
strong events. Therefore, the estimation of magnitude distribution in the 
uppermost range plays a key role in the problems related to natural disasters 
hazard assessment and mitigation. The statistical theory of extreme values 
provides a solid mathematical base for such estimations.  In this work, we 
mainly focus on the problem of seismic risk assessment, since the 
corresponding data sets are more abundant and well suited for the 
demonstration of different statistical methods of heavy tailed distribution 
analysis.  

 

The empirical distribution of damage produced by various types of 
catastrophes can often be described by the Pareto power-law:  

                   
                          F (x) = 1 – (a / x)β,  x ≥ a.                                             (1) 
 
Such power-law distribution with the exponent β ≤ 1 has an infinite 

mathematical expectation E(X): 
  

            E(X)  = ∫ 𝑥𝑑𝐹(𝑥) =  𝛽𝑎𝛽∞𝑎 ∫ 𝑥−𝛽𝑑𝑥 =  ∞∞𝑎 . 

                                           
 Sample estimates of parameter β in the range β ≤ 1 are readily obtained from 

empirical data sets.  Of course, all real losses and earthquake energies are 
finite. Thus, the true law of distribution in the range of rare strong events 
should deviate from the Pareto law (1).  The finiteness of a random value can 
be modelled by a distribution with a maximum possible value [Cosentino et 
al. 1977; Kijko and Sellevoll, 1989; 1992; Pisarenko et al., 1996; Ward, 1997; 
Burroughs & Tebbens, 2001; Kijko and Singh, 2011; Vermeulen & Kijko, 

2017] or by a distribution with special rapidly decaying factor in the extreme 
range [Kagan, 1999]. We use below the finite distributions resulting from the 
extreme value theory: the General Extreme Value distribution (GEV) and the 
Generalized Pareto Distribution (GPD) with negative form parameter (see 
below). They naturally appear as the limit distributions for maxima of 
observed random values [Gumbel, 1958]. 

This article presents an overview of the results published in a series of 
works by the authors [Pisarenko & Rodkin 2010; 2014;  2015; 2017; 
Pisarenko et al., 2014; 2017]  and it contains as well several new results.   
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1.  A faster-than-linear growth of cumulative damage with time and 

its possible incorrect interpretation. 

 
Cumulative damage from natural disasters frequently exhibits a nonlinear 

(faster than linear) growth with time. This growth is observed for both the 
number of disasters and for the associated losses (examples are shown in Figs. 
1, 2). 

 
Figure 1 -  The annual number of world natural disasters as a function of time during the 

period 1975–2005 based on EM–DAT, [Pisarenko & Rodkin, 2010]; the definition of a 
country-level disaster is given in EM-DAT Glossary and means a disaster that has affected 
a particular country, if several countries were affected the disaster  is indicated several times.  
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Figure 2 - Annual losses from natural disasters (including individual most damaging 

events) during the period 1975–2005 based on EM–DAT, [Pisarenko & Rodkin, 2010]. 

 
Whereas the increase of the number of documented catastrophes may be 

attributed, at least partly, to the development of registration systems and to a 
greater availability of the corresponding information, the non-linear growth 
of cumulative damage requires a separate explanation. Some authors attribute 
such faster-than-linear growth to such factors as worsening ecological 
conditions, urbanization, population growth, and climate change [Berz, 1992; 
Osipov, 1995; 2002; Seneviratne et al., 2012].  However, such growth can as 
well be observed in a stationary situation, provided the distribution of damage 
values has a heavy tail [Pisarenko, 1998; Pisarenko and Rodkin, 2010; 2014]. 
Let us analyze this case in more detail. 

As noted above, the empirical distributions of damage produced by 
different types of natural disasters can be approximated by the Pareto power-
law distribution (1). Examples of distribution of damage values from floods, 
hurricanes and earthquakes in the USA are shown on Fig. 3. The estimates of 
the exponent β obtained by the maximum likelihood method are less than one, 
thus we are dealing with heavy tailed distributions. 
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Figure 3 - Mean numbers N of events per year with economic losses greater than L ($ 

USA): floods 1986-1992 (1); earthquakes 1900-1989 (2); hurricanes 1986-1989 (3). 
The fitted power-law complementary distributions 1 – F(x) are shown by lines, the values 

of exponents are: βn = 0.74 (floods): βn = 0.41 (earthquakes), and βn = 0.98 (hurricanes) 
[Pisarenko & Rodkin, 2010]. 

 
The maximum likelihood estimate of parameter β equals 
                 
     βn =  n/( Σ ln(xi/a) ),                                                           (2) 
 

where the sum is taken over all  xi ≥ a, i=1, …n.   
Now let us assume that the number of events n is a random value obeying 

the Poisson law  
       
                                     Pr{n=k}= (λT)k/ k!   ; k = 0,1, 2, 3,… 
 

with parameter λT  (λ is the intensity of corresponding Poisson process, T is 
time of observation).   Let us consider the median µ(T) of the largest event 
that occurred within time interval [0 T].  The median µ(T) of the maximum 
event over time T  for the Pareto law equals [Pisarenko & Rodkin, 2010] 
 

                 µ(T)  = a (λT/ln(2))1/β  .                                            (3) 
 
Let us denote by Σ(T)  the sum of damages and by R(λT, β) the ratio 

Σ(T)/µ(T): 
             Σ(Т) = R(λT, β) × µ(T).                                                 (4) 
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It can be shown that R(λT, β) remains limited as T tends to infinity [Feller, 
1966]. This property can be expressed in a different way: for distributions of 
type (1) with β < 1, the one strongest event is of the same order as the 
cumulative sum of all other events. It follows from the above formulas that 
the mean value  E[Σ(Т))]  increases linearly with  T for β > 1 and proportional 
to T1/β for           β ≤ 1 : 

 
 E[Σ(Т))]  =  C(β,T)·T max(1, 1/β) ;     C(β,T) is limited.                       (5) 

 
As it can be seen from (3) - (5), both the single maximum event and the 

cumulative sum of all the events increase with time in a nonlinear manner, 
that is proportionally to  T1/β ,  if β < 1; and that is true even for a stationary 
process.  

Of course, one should distinguish the statistical effect of a non-linear 
growth due to a heavy tail, from the effect of a real non-stationarity of the 
regime of disasters, caused for instance by climate change, by an increased 
vulnerability of the technological infrastructure to disasters, or by other 
factors. 

As we noted above, a distribution with the exponent β<1 is not applicable 
to physical quantities, but for relatively small data sample sizes one can obtain 
sample estimates βn <1 (see Fig.3).  This may occur because small data 
samples with  β  exceeding unity are hardly distinguishable from samples with 
β below unity. This effect can be clearly illustrated if we consider the 
Gutenberg-Richter (G-R) and the truncated G-R distributions, FGR(x) and 
FTGR(x) respectively. FTGR(x) is bounded by some Mmax value.  One can 
achieve an arbitrarily small departure | FGR(x) - FTGR(x) | within an arbitrarily 
wide interval |x| ≤ A by choosing a sufficiently large value of Mmax. This 
means it is practically impossible to distinguish these two distributions based 
on small data samples. Thus, one can expect that certain statistical properties 
of the heavy-tailed distributions cannot be reliably estimated from small or 
intermediate data samples. It is very difficult to justify the choice of Mmax for 
certain types of damages: the associated costs can be extremely high in 
today’s world. But still, one may reasonably assume some kind of saturation 
of the growth of damages, at least for some types of damages. This saturation 
effect can reveal itself through a precise shape of the distribution’s tail (a bend 
down of the tail), whereas a non-saturated sample distribution may include a 
huge event, such as the mega-earthquake Tohoku in Japan (2011, M = 9.08). 
Such events occur very rarely and can produce effects typical for the heavy-
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tailed distributions: in particular, they may result in a non-linear growth of 
total losses over a certain time interval.  

 
 
2. Description of the bend down of heavy tail distributions – an 

approximated technique 

 
This section provides a simple method for description of the bend down in 

the distribution tail, suitable for the cases of small and moderate sample sizes; 
see [Pisarenko and Rodkin, 2010] for details.  

As discussed above, a characteristic feature of the power-law distributions 
with β < 1 is a nonlinear initial growth of total damage with time. A similar 
nonlinear growth is observed for the total released seismic energy (5): 

 
 E[Σ(Т))]  =  C·T 1/β ;         β < 1.                                              (6) 

 
However, this non-linear growth must slow down with time and eventually 

become linear with respect to time, which is typical of stationary processes 
with a finite average value: 

               
E[Σ(Т))] =  C·T ;         β ≥ 1.                                                 (7) 
 
We define the transition time Ttp as the time moment when the nonlinear 

cumulative growth becomes linear. Below we describe how one can evaluate 
Ttp. Let us define the characteristic damage value Dtp, with recurrence time 
Ttp corresponding to the transition point. In practice, this transition point can 
be estimated with a large uncertainty since the available time series of disaster 
related damage or those of released seismic energy are extremely variable. In 
order to reduce this uncertainty, we suggest the following bootstrap procedure 
(see for details [Pisarenko & Rodkin, 2010).  We numerically simulate a 
number of damage curves S(t), using a randomly shuffled original data sample 
(say, 1000 samples). Then for each time t, we take the median MS(t) of the 
bootstrap curves S(t) : 

                                         
MS(t) = median < S(t) >. 

 
The median MS(t) can be approximated by a simple regression relation  
 

                  lg(MS(t)) =   ao + a1 lg(t)  +  a2 lg2(t),                            (8) 
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where coefficients ao, a1, and a2 are estimated by the standard least squares 
method. 

For stationary time series with a finite average C we obtain 
 
              MS(t) = Ct,  and  lg(S(t)) = lg(t) + lg(C).    
Thus,  
               d( lg(MS(t)) / d( lg(t) ) = 1.                                             (9)  
 
So, we can take this condition for the determination of the transition point 

Ttp exploiting equations (6) - (7) as an assumed behavior of damage curves. 
The transition point Ttp is determined as the smallest t value, for which the 
equation (6) sill keeps satisfied. Thus,  

      
       a1 + 2·a2 lg(Ttp) = 1 ;   lg(Ttp)  = (1 - a1) /(2·a2).                   (10) 
 
Using Ttp we determine the corresponding damage value Dtp: 
 
                      Dtp = S(Ttp). 
 
The value Dtp can be regarded as the characteristic damage typical of tail 

events. The cumulative damage S(t) behaves approximatively linearly with t 
for t > Ttp. 

The procedure described above is applicable not only to the damage data, 
but also to the disaster related death tolls and to other data. Results of 
calculation of Ttp and Dtp for several available data sets are given in Table 1. 
It can be seen that the characteristic Dtp of victims of natural disasters tends 
to decrease with time, which can probably be attributed to the global 
improvement of the technological infrastructures (better quality of civil 
construction, better hazard mitigation policies etc.). 
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Table 1 - Characteristic values Ttp and Dtp for earthquakes and floods for different world 
regions and time intervals. 

Disaste
r   type 

Region, 
country 

Recur-
rence 
time 
Ttp, 

years 

Characte
-ristic   
event, 
Dtp,  

number 
of 

fatalities 

Maximum  
event, 

number of 
fatalities 

Data source,  
data base 

Earth-
quakes 

Developed countries Significant 
earthquakes, NOAA, 
https://www.ngdc.no
aa.gov/nndc/struts/for
m 

1900-1959 33 95000 110000 
1960-1999 30 24000 17000 

Developing countries 
1900-1959 40 270000 200000 
1960-1999 60 260000 240000 

Floods North  America and  European Union Em-dat,  
The International 
disaster database,  
https://www.emdat.b
e 

1950-1980 15 1500 650 
1980-2005 10 500 200 

SE and S 
Asia 
1984-2006 

20 10000 6000 

 

 

3. Description of the bend down of heavy tail distribution – detailed 

examination 

 
A detailed statistical description of heavy tail distributions can be obtained 

on the basis of the theory of extreme values. This approach needs, however, 
substantially larger data samples than the simple method discussed above 
[Pisarenko, Rodkin, 2010;  Pisarenko et al., 2010;  Pisarenko, Rodkin, 2014; 
2015; 2017 et al.].  

There are two limit distributions in the extreme value theory: the 
Generalized Pareto Distribution (GPD) and the General Extreme Value 
distribution (GEV). Each of these distributions depends on three parameters 
and they are closely interconnected (see for details [Pisarenko and Rodkin 
2010]). We use below the Generalized Pareto Distribution (GPD). The GPD 
appears as the limit distribution of scaled excesses over sufficiently high 
threshold values.  

The GPD distribution has three parameters:  the form parameter ξ,   - <  
ξ < + ;  the threshold parameter h, - < h < + ;  and the scale parameter 
s, 0 < s < + .  

The GPD distribution function has the form: 


  



https://www.ngdc.noaa/
https://www.ngdc.noaa/
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GPDh( x |, s) = 1 – [1 +(/s)(x –h)] –1/,           ξ 0; 

                                           (11) 
GPDh( x |0, s) = 1 – exp(-(x –h)/s),                     ξ = 0; 

 
There is a close connection between GPD and GEV distribution laws. A 

Poisson flow of events obeying a GPD law is distributed in accordance with 
the GEV distribution law with the same form parameter ξ. There are simple 
formulas connecting other parameters of GEV and GPD (see [Embrechts et 
al. 1997; Pisarenko & Rodkin, 2010]).  

Using GPD distribution as limit distribution for a particular data sample 
involves the estimation of three parameters (11). After this estimation is done, 
the calculation of any statistical characteristic for the maximum event in any 
future time interval is a routine procedure. However, the practical use of GPD 
is often limited by a deficit of available data: our experience shows that a 
reliable estimation typically requires at least 30 strong events in the 
uppermost range.  

Table 2 presents several estimates of GPD-parameters for a number of 
disasters (see [Pisarenko & Rodkin, 2014] for details). The value (-1/ξ – 1) 
characterizes for negative ξ the rate of decay of the density to zero in vicinity 
of the upper limit bound Mmax :  

 

  f(x) ~ 1/(Mmax -x) -1/ξ – 1,   x  → Mmax ;   -1 <ξ < 0. 
 
The faster decay rates of the tail to the zero value (Table 2) are observed 

for the economic losses produced by floods and hurricanes, whereas the 
corresponding fatality and the injured/affected distributions have, as a rule, 
smaller | ξ |-values, which corresponds to a slower decay of the tail.  

The maximum Mmax of the GPD distribution with negative form parameter 
ξ  equals  
 

Mmax = h – s/ξ,   ξ < 0.                                                     (12) 
 
Thus, the lesser | ξ | the larger Mmax . Factually it means that in the case of 

small | ξ | values, the Mmax is highly unstable and its estimate is not robust. 
Instead of using unstable Mmax, we introduced a more stable estimate that 
characterizes the uppermost range of the distribution, namely, the quantile of 
the GPD-distribution. The quantile Q(q) of probability level q for the 
distribution function F(x) is defined by the relation: 


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F(Q) = q.                                                        (13) 

 
Thus, the quantile Qq is in fact the inverse function with respect to the 

distribution function F(x). The continuous distribution function and the 
quantile function are uniquely related. The distribution function is an integral 
characteristic of random value (in contrast to the local characteristic – the 
probability density). So, we can consider the quantile as an integral 
characteristic of the distribution’s tail. That is why the quantile gives more 
stable and robust characterization of the tail than the point estimation Mmax  
eq.(12),   see discussion [Pisarenko & Rodkin, 2010; 2014]. Besides, one may 
interpret the quantile Qq  as an upper confidence bound of level q for 
corresponding random value x: 

        
Pr{ x < Qq } = q.                                                  (14) 

 
For GPD-distribution the quantile Qq  has the form: 
  

Qq = h + (s/ξ)·[ (1-q)-ξ – 1].                                    (15) 
  
We calculated such quantiles Qq(T) for maximum event size in future time 

interval T for a number of disasters [Pisarenko and Rodkin, 2014]. Table 2 
presents Qq(T) with confidence level q=0.95 and time interval 10 years  
Q0.95(10). The intensity of the seismic flow (number of events per unit time) 
is designated as λ. 

Looking at these estimates, one may conclude that economic losses are 
strongly influenced by a rapid global development of the technological 
infrastructure and by the population growth. For that reason, a reliable 
forecast of such characteristics over long time spans is quite problematic.  The 
quantiles are more robust with respect to such uncertainties.  

The last two rows in Table 2 summarize the results of the analysis of 
annualized data. The aggregation of event sizes over one-year intervals 
represents in essence a linear filtration (smoothing) of the corresponding time 
series. That is why the tails of annualized distributions are as a rule less heavy 
compared to the tails of original distributions. This fact can explain the trend 
for higher absolute values of the form parameter | ξ | of annualized 
distributions in Table 2, compared to the corresponding form parameters for 
individual events.  
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Table 2 - Characteristics of disasters and form parameter of fitted GPD-law. 
 Lowe  threshold 

m0, Sample size n, 
Intensity λ, 
(1/year) 

Form 
parameter 

ξ 

Maximum 
observed 

value 

Quantile 
Q0.95 (10) 

Seismic moment 
Mw,CMT 
catalog, 
1976-2012 

m0=6.8 
n=324 
λ=8.8 

-
0.16±0.08 

9.1 9.1 

Earthquake 
fatalities, Japan, 
1900-2011 

m0=3 persons 
n=44 

λ=0.339 

-
0.26±0.11 

142 807 
persons 

58 
thousand 

persons 
Earthquake 
injured, Japan, 
1900-2011 

m0=3 
n=99 

λ=0.884 

-
0.37±0.06 

103733 
persons 

75  
thousand 

persons 
USA, fatalities 
from floods, 
1995-2011 

m0=3 
n=41 

λ=1.11 

-10-9 35 
persons 

53 
persons 

Affected in 
floods, USA, 
1995-2011 

m0=500 
n=52 

λ=3.06 

-
0.18±0.11 

11 million 
persons 

17 million 
persons 

USA, fatalities 
from tornadoes, 
1953-2012 

m0=20 
n=53 

λ=0.88 

-10-9 1200 
persons 

1500 
persons 

Annual economic 
losses from floods 
in USA, 1940-
2011 

m0=2.5 
n=48 

-
0.35±0.09 

51.3, 
109 $ 

46, 
109 $ 

Annual economic 
losses from 
hurricanes in 
USA, 1940-2011 

m0=32 
n=64 

-
0.64±0.05 

141, 
109 $ 

123,  
109 $ 

 

4.  A two-branch model for distribution of earthquake magnitudes   

 
As mentioned above, the practical use of GPD approach is limited by a 

deficit of available data needed for reliable estimation of unknown 
parameters. The two-branch model that we introduce below, allows us to 
partially lift this limitation. The magnitude distribution of moderate size 
earthquakes is well known to obey the normalized Gutenberg-Richter (G-R) 
distribution law: 

F(m) = 1 – exp[-b·(m – m0)];                   m0 ≤ m 
In terms of seismic moment values M0   
                                       lg(M0) =1.5m + 16.1   {dine·cm} 
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 This law represents a power-law distribution: 
       
 Pr{M0 < z } = 1 – C/z2b/3ln(10) ; C = const.                               (16) 
 
The exponent in (16) is typically less than unity; therefore, this is a 

distribution with a heavy tail. We discussed above the physical inconsistence 
of infinite models with β≤ 1. The family of GPD-distributions includes 
infinite distributions with heavy tails when ξ ≥ 0. But for ξ < 0 the GPD-
distribution is finite. We propose a model with a distribution that coincides 
with the Gutenberg-Richter model in the lower and intermediate range, and 
follows the GPD-distribution with ξ < 0  in the large event range [Pisarenko 
and Rodkin 2020].  

 These two laws are smoothly attached to each other at some point h, so 
that the overall distribution function F(m) of the two-branch model is: 

 
               C1{1 – exp[-b·(m – m0)]};                   m0 ≤ m ≤ h ;  
F(m)=                                                                                                          (17)                                                                                          

        C1{1–exp[-b·(h– m0)]}+C2{1–[1 + (ξ/s)·(m – h)]-1/ξ };  h ≤ m ≤ Mmax ,  ξ < 0. 
 
In (17) the first branch corresponds to the G-R law, and the second one is 

the GPD law with a negative form parameter ξ < 0.  Here we a priori consider 
only negative values ξ < 0, which corresponds to the finite distribution of 
magnitudes, in contrast to models sometimes used for the magnitude 
distribution. One can note that most of the estimates of ξ from real data sets 
turned to be negative (see Table 2 and [Pisarenko, Rodkin, 2010; 2014]). 

Model (17) contains 5 unknown parameters. The threshold h separates 2 
branches of the model; b, m0, s, ξ are the model parameters; C1, C2 are 
constants that depend on the above parameters and should ensure the 
normalization of the distribution function F(m) and its continuity:     

 
C1 = 1/{1 + bs·exp[-b(h-m0)] - exp[-b(h-m0)] },                                
C2= 1 - C1{1-exp[-b(h-m0)]}.                                                                  (18)                                      

 
Moreover, we impose that the distribution density function f(m) = F’ (m) 

be continuous at the branches junction point  m=h.  From this condition we 
get: 

                       s = (1+ξ)/b.                                                        (19)             
 
Finally, we obtain the following two-branch model:     
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             C1{1 – exp[-b·(m – m0)] };                             m0 ≤ m ≤ h ; 
F(m) =                                                                                                        (20)         

        С3+C2{1–[1+
𝑏𝜉1+𝜉(m– h)]-1/ξ };    h ≤ m ≤ h - 𝑏𝜉 1+𝜉 ,    -1 < ξ < 0; 

 
                               C1 = 1/(1+ξ exp[-b·(h – m0)] );                                                     
                               C2 = (1 + ξ) exp[-b·(h – m0)] /(1+ξ exp[-b·(h – m0)] );                                
                               C3 = {1 – exp[-b·(h – m0)] }/(1+ξ exp[-b·(h – m0)] ).                                              
 
The meaning of the parameter m0 is straightforward: it is the lower 

threshold of the event sizes that satisfy the G-R law. Thus, we are left with 
three unknown parameters h, b, ξ that need to be estimated from data. We 
estimate these parameters by the maximum likelihood method.  The number 
of unknown parameters (three) is the same as in the case of the GEV or GPD 
distributions discussed above, but now an additional information about 
moderate size earthquakes is included in the statistical estimation.  

This approach was applied to the data on seismicity of Japan and of the 
Kuril Islands. We would like to emphasize that the spatial resolution of 
estimates obtained by using the two-branch model can be higher than that 
obtained by traditional models, since it provides the parameter estimation 
based on samples of lesser size. 

We illustrate the application of the two-branch model on the following 
example, where the quantile Qq(T) of maximum earthquake during the future 
T years with confidence level q is taken as the main characteristic of the 
seismic hazard. The quantile Qq(T) means that in the future T years, the 
maximum earthquake in the considered region will not exceed Qq(T) with the 
probability q.  The quantiles Qq(T) for T = 50 years, q = 0.90  are presented 
on Fig. 4.  
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Figure 4 - The spatial distribution of quantile Q0.9(50) for Japan and the Kuril islands. 

 
 
5. Discussion 

 
The power-law heavy tailed distributions have proven to be adequate 

model for values of damage (such as fatalities) produced by natural disasters, 
as well as for a number of other characteristics of natural catastrophes. That 
is true at least for relatively limited time intervals covered by existing catalogs 
of events. Energy of earthquakes and seismic moments also demonstrate 
distributions of such kind.  The statistical methods described above provide a 
more or less detailed analysis of the heavy-tailed distributions depending on 
the amount of available observations. As a first step, the very fact of 
applicability of the power law distribution can be verified, and the associated 
exponent β can be estimated. The requirements to the data volume are 
minimal at this stage. If the exponent for the model power-law distribution is 
β < 1 (which occurs quite often in practice), the corresponding distribution 
has an infinite mathematical expectation. In this case, the standard methods 
of statistical analysis based on sample mean and sample standard deviation 
are not applicable, and one can obtained erroneous estimates by using these 
statistics. 
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Naturally, all real losses and earthquake energy values are finite. 
Therefore, the distribution law should deviate from the Pareto law with β<1 
in the range of rare strong events. A more detailed analysis can be performed 
with the help of models using the concepts of the transition point Ttp and the 
characteristic event size Dtp (damage or magnitude). The transition point Ttp 
indicates the time moment when the nonlinear damage growth caused by the 
effects of the heavy tail becomes linear with respect to time. The characteristic 
size Dtp can be determined through the recurrence time Ttp. The data needed 
for performing such an analysis may include only several events in the 
extreme range.  

Estimates of Ttp and Dtp for earthquakes and floods related fatalities from 
event catalogs covering the period 1900-2016 show a decreasing trend for 
their values with time. One can therefore conclude that the characteristic 
number of victims resulting from a natural disasters tends to decrease with 
time, contrary to a wide spread point of view. Similar conclusion can also be 
made for earthquake death tolls. Observations testify for a certain general 
decrease with time of fatalities associated with a characteristic natural 
disaster. These conclusions are in contradiction with some inferences 
published earlier [Osipov, 1999; 2002]. 

    More detailed analysis of damage distribution can be performed on the 
basis of the theory of extreme values. However, such an analysis requires a 
significantly bigger amount of data: practical estimates show that the 
registered large events should count at least in dozens.  

The application of these methods in practice has demonstrated their 
effectiveness. It can be noted, that in the majority of cases we obtained 
negative values of the GPD form parameter ξ, which corresponds to a finite 
distribution with the upper bound  Mmax, see eq.(12): 

 
Мmax = h – s/ ξ ,     ξ < 0,  s > 0. 

                                                                               
Such a result was to be expected: since any real values of fatalities, losses, 

and energy of disasters are finite, the corresponding distribution law must be 
finite too. Quite often the obtained estimates of ξ are very close to zero, which 
gives rise to an instability of the estimation of Mmax. That explains the 
uncertainties in the estimation of the maximum regional earthquake 
magnitude, which in turn leads to the necessity of regular revisions of the 
seismic zoning maps. The same reason is behind the non-robustness of 
estimates of the maximum damage values (number of victims) from natural 
and man-made disasters. 
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In contrast to non-robust estimates of Mmax, the quantiles Qq(T) – the sizes 
of maximum event for T future years expected with probability q - are robust. 
The associated damage characteristics Ttp and Dtp are robust as well. 

Practical application of the theory of extreme values encounters limitations 
due to the lack of strong events in the available observations that are needed 
for the estimation of GPD- and GEV-parameters. Application of GPD- and 
GEV- approaches shows that one typically needs at least 30 strong events for 
a reliable estimation of their parameters. We therefore suggested to use the 
information contained in moderate size events, and to cover the “strong 
events” and “moderate events” intervals of the distribution by a common 
recurrence law. To that end, we introduced the two-branch earthquake size 
distribution model: the Gutenberg-Richter law is used for the moderate size 
earthquakes, while the strong earthquakes are modelled by the GPD 
distribution. Using this approach, we constructed the map of the quantiles 
Qq(τ) of strong earthquakes for Japan and Kuril Islands area which has the 
spatial resolution approaching that of the seismic zoning maps.  Taking into 
account the similarities of the earthquake size distribution with the 
distribution of fatalities and disaster related losses, we believe that this 
approach can also be applied to such data.  

 
 
6. Conclusion 

 
The heavy tailed distributions are commonly used for modelling of losses 

from natural disasters (in particular, the number of fatalities). The distribution 
of seismic moments of earthquakes is also frequently modeled by the power 
law distribution with a heavy tail. We presented in this paper a collection of 
statistical methods for studying distributions with heavy tails. These methods 
allow us to describe the empirical data with the help of statistical models 
whose degree of detail depends on the amount of the available observations. 
We demonstrated how the exponent of the approximating power law can be 
adequately estimated in the case of limited data sets.  We also showed how to 
obtain rough estimates of the transition time Ttp from a non-linear to a linear 
mode of growth of cumulative loss, and the estimates of the characteristic 
damage size Dtp. For larger data samples, the methods of the theory of 
extreme values can be applied.  
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